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Abstract 
Climate finance studies overlook the effects that climate policy risk and ambiguity have 
on the required investments in new technology to transition to a green economy. We 
analyze the effects that climate policy risk and ambiguity have on firm-level private 
economic value of technological change and its diffusion through the stock market over 
the period 1994 to 2019. We find that climate policy risk has a positive impact on market 
valuations of patents for all firms and for green firms. However, climate policy risk does 
not appear to influence the market valuation of patents of brown firms. Confidence shocks 
about business conditions (one dimension of ambiguity), have a negative impact on 
market valuations of patents for all firms, including green and brown firms. Moreover, a 
highly connected productivity network with lower correlation uncertainty (another 
dimension of ambiguity) increases firms’ investments in new technology, in particular by 
green firms. The results have important implications for a successful transition to a green 
economy, because ambiguity (unlike risk) has first-order welfare effects with the potential 
to generate inertia and inaction in the adoption of new green technologies. 
 
Keywords: technological change, innovation diffusion, real options, ambiguity, climate 
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1.  Introduction  

Following the Paris Agreement accord of 2015, an increasing number of nations across 

the world have been pursuing concerted actions to achieve net-zero emission targets by 

the year 2050. By 2023 as shown in Figure 1, six nations have self-declared to have 

reached the target, 27 are enforcing it by law, and 52 have included the target in a policy 

document. Only 47 out of 198 nations have no net-zero target. Yet, across regions, cities, 

and large corporations the situation is dire: three out of four have no net-zero targets 

planned. In the eight years since the Paris Agreement, a clear path to global climate 

goals has yet to materialize.  Our research contemplates the paralysis that ambiguity can 

foster and the value implications.    

The pioneering work of Nordhaus (1977, 1991, 1992) on climate change and the real 

economy, paved the way for what is now an influential literature on climate economics 

and finance. This literature studies the impact that carbon dioxide (CO2) and other 

greenhouse gas (GHG) emissions have on economic growth. An important aspect relates 

to the incentives and policies required to transition to a green (low carbon-emission) 

economy and achieve the net-zero target.1   

 
1 For critical reviews of this literature see Stern (2008, 2016); Balint, Lamperti, Mandel, Napoletano, 
Roventini and Sapio (2017); and Giglio, Kelly, and Stroebel (2021). Climate finance overlaps with the 
literature in finance on sustainable, environmental and social governance (ESG). For recent reviews of this 
literature see Friede, Busch, and Bassen (2015); and Atz, Van Holt, Liu, and Bruno (2023).  



4 
 

We investigate the impact of uncertainty on corporate investment associated with 

climate and transition risk. More specifically, we focus on technological change and 

innovation diffusion as key drivers of economic growth that underlie the structural change 

required to transition to a green economy. This transition involves governance challenges 

of an unprecedented scale due to its long-term horizon, global nature, and numerous 

uncertainties. Stern (2008) and Barnett, Brock, and Hansen (2020) argue the transition 

process is affected by uncertainty in the broadest sense, which includes both uncertainty 

regarding the outcome of events with known probabilities (risk) and uncertainty 

regarding the outcome of events with unknown probabilities (ambiguity). Yet to date, 

little attention has been given to the effects that uncertainty in the broadest sense may 

have on corporate investment strategies driving the shift from the old technological 

paradigm to the new green one.2 

We attempt to close the existing gap in the climate finance literature by assessing 

the effects that climate policy risk and ambiguity may have on firm-level technological 

change and innovation diffusion. Specifically, we examine the market valuation of patents 

 
2 Knight (1921), Keynes (1921), and Shackle (1949), set the foundations for the influential literature in 
economics and finance on Knightian uncertainty or ambiguity, also referred as a preference for robustness. 
The relevance of ambiguity in decision making has been exposed by Ellsberg (1961) and related experiments 
(for a survey see Camerer and Weber, 1992), who demonstrate that when facing ambiguity, robust choices 
cannot be rationalized by any probability belief consistent with the Bayes-Savage paradigm. Ambiguity 
introduces a distinct behavioral response from risk. For a recent and extensive review of the literature with 
applications in macroeconomics and finance, see Ilut and Schneider (2022). 
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to measure the impact that climate policy risk and ambiguity have on the private 

economic value of technological change and its diffusion through the stock market across 

industries and across time in a sample of U.S. firms over the period 1994 to 2019.3 

Following the literature (Kogan, Papanikolau, Seru, and Stoffman, 2017), we view the 

stock market valuations of patents as a measure of firms’ growth opportunities associated 

with technological change (see also Hirschey and Richardson, 2004; Hall, Thoma, and 

Torrisi, 2007; Glaeser, Michels, and Verrecchia, 2020; and Martens, 2021). Thus, we use 

the Kogan, Papanikolau, Seru, and Stoffman (2017) dataset of patents granted by the 

U.S. Patent and Trademark Office (USPTO).  

Patents have been commonly modeled as managerial real options4 in the classic 

literature on irreversible investment under risk. More recently, the theoretical literature 

on irreversible investment under ambiguity pioneered by Nishimura and Ozaki (2004, 

2007), has shown that ambiguity has a distinct effect from risk on the value of a patent. 

Whereas an increase in risk increases the value of a patent as a real option, ambiguity 

reduces the value of a patent. Both risk and ambiguity increase the value of the option 

to wait, making waiting more likely, except during periods of extremely high ambiguity, 

 
3 We use 1994 as starting year of our dataset, because this is the first year that climate change started to 
appear in U.S. shareholder proposals at annual stockholder meetings.  
 
4 See the seminal work of Arrow (1968), Myers (1977), Brennan and Schwartz (1985), McDonald and Siegel 
(1986), Dixit and Pindyck (1994), and Trigeorgis (1997). For recent work on real options under risk, see 
Sarkar (2003), Lund (2003) Bloom, Bond and Van Reenen (2007), and Tsekrekos (2010).  
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where managers have no knowledge about the true distribution of future cash flows. In 

this case, ambiguity may erode completely the value of the option to wait (Miao and 

Wang, 2011). 

Conceptually, we derive economic agents’ valuations of technological change from a 

new Keynesian dynamic stochastic general equilibrium (DSGE) model under ambiguity, 

where managers’ optimal behavior builds from the dynamic corporate finance literature 

on irreversible investment under ambiguity. Since Gilboa and Schmeidler (1989), it is 

common to incorporate ambiguity into economic agents’ beliefs assuming multiple-priors 

preferences, which as shown by Epstein and Schneider (2003 pp. 16-17) are dynamically 

consistent. Robust economic agents hold some reference prior about the data-generating 

process (DGP) driving business conditions, but because of their lack of confidence, they 

also hold a statistically close set of multiple-priors around the reference prior.  

Based on the theoretical literature, we conjecture that the market value of 

technological change should increase with climate policy risk and should decrease with 

an increase in the level of ambiguity in the economy. Furthermore, firms’ innovations 

should increase with a more connected innovation network i.e., a more resilient network 

with lower correlation uncertainty. Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi 

(2012), show that the transmission mechanism of technological change affecting current 

and future business conditions is conditional on the asymmetry and degree of 
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connectedness of the productivity network of the economy. Lee and Viale (2023), show 

for the case of East Asia that a highly connected productivity network may signal a low 

level of correlation uncertainty. We test empirically these conjectures using a large 

longitudinal panel of firms in the U.S.   

Our research resembles Coiculescu, Izhakian, and Ravid (2022), who also model 

patents or innovation investments as real options and look into the effects of risk and 

ambiguity on innovation. However, they focus on research and development (R&D) 

expenditures, while we examine the private economic value of patents. Furthermore, their 

interest lies in the Tech sector, while we consider all industries and separately investigate 

green and brown firms.  Cohen, Gurun, and Nguyen (2022) investigate firms that produce 

green patents in the U.S. They reveal a disconnect between these firms and ESG-related 

investments. We have a different goal and we also differ conceptually and 

methodologically from these other related studies. 

Empirically, we follow the dynamic corporate finance literature and implement a 

comprehensive panel data analysis. However, consistent with the ambiguity paradigm we 

complement standard econometric analyses with more robust and efficient statistical 

methods.5 In particular, in the first step of the longitudinal analysis, alongside static fixed 

 
5 The foundational work on robust statistics can be traced back to Tukey (1960, 1962), Huber (1981), 
Rousseeuw and Yohai (1984), Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Yohai (1987), and 
Staudte and Sheather (1990). For a comprehensive recent coverage of robust statistics methods see 
Maronna, Martin, Salibían-Barrera, and Yohai (2019). 
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effects panel data (PD) regressions, we run robust Prais-Winsten PD regressions with 

panel-corrected standard errors and robust PD regressions using the generalized LSM-

estimator of Gervini and Yohai (2002). Subsequently, we run dynamic PD regressions 

using the continuous updating (CUE-GMM) feasible and efficient estimator of Hansen, 

Heaton, and Yaron (1996).6 In the final analysis, we inspect the transmission mechanism 

of ambiguity and climate policy risk on investors’ valuations by running a panel-VAR 

analysis complemented with a local projection impulse-response analysis.7  

We find that climate policy risk has a significant positive impact on the market 

valuation of patents granted in the U.S. for the period 1994-2019, for all firms and for 

green firms. However, climate policy risk does not appear to influence the market 

valuation of patents of brown firms. Market volatility also has a significant positive 

impact on investors’ valuations of firms’ innovations, including brown firms.  

We also find that confidence shocks on current and future business conditions (one 

dimension of ambiguity) have a significant negative impact on the market valuations of 

 
6 The estimation of the system-GMM is implemented using Kripfganz (2019) xtdpdgmm package in 
STATA, which accounts for unobserved firm-specific heterogeneity and allows the inclusion of nonlinear 
moment conditions if required as suggested by Ahn and Schmidt (1995). 
 
7 We use the STATA command locproj developed by Ugarte-Ruiz (2023). The main advantages of this 
method are: 1) Impulse response functions (IRFs) can be computed without the estimation of a VAR, 2) 
IRFs can be estimated using simple regression analysis; 3) it is more robust to model misspecification; and 
4) it can accommodate nonlinear flexible specifications. For a discussion of nonlinear impulse response 
functions see Potter (2000), Jordá (2005), Gonçalves, Herrera, Kilian and Pesavento (2021), and 
Gouriéroux and Lee (2023). For a recent survey see Jordá (2023). 
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patents. Also, a lower correlation uncertainty (another dimension of ambiguity) has a 

significant positive effect on green firms’ investments in new technologies.  

Further results from dynamic analyses reveal a complex transmission mechanism 

between risk, ambiguity, and investors’ market valuations. Confidence shocks, contribute 

up to 38.92% of the variation of investors’ patent valuations at the end of five years, and 

have a significant indirect effect by contributing up to 77.31% of the variation in 

correlation uncertainty, and up to 16.73% of the variation in climate policy risk after five 

years. For green firms, climate policy risk exerts an indirect effect on investors’ patent 

valuations by contributing up to 35.80% of the variation in confidence shocks after five 

years. These shocks have a decaying value with a half life of 2 ½ years.  

Furthermore, we find a positive association between patents’ scientific value, 

investors’ market valuations, and the number of patents granted, a result that is 

consistent with Kogan, Papanikolau, Seru, and Stoffman (2017). We also find an 

economically and statistically significant reaction of market valuations to the American 

Investors Protection Act (AIPA) of 2000. Also consistent with the literature, we do not 

find a strong and robust contemporaneous link between risk, ambiguity, and research 

and development (R&D) expenditures.  

Finally, we do not find a significant market reaction to the result of the U.S. election 

of 2017 that signaled the official retirement of the U.S. from the Paris Accord. Ilhan, 
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Sautner and Vilkov (2021) argue that President’s Trump election was interpreted as a 

no-news event by investors because it did not change the climate policy status-quo of the 

U.S.  

The rest of the article proceeds as follows. In section 2, we review the related 

literature. In section 3, we summarize the model that serves as a conceptual framework 

for the empirical analyses. In section 4, we describe the dataset. The empirical analyses 

with a discussion of results and their economic interpretation are included in section 5. 

We conclude in section 6. 

 

2.  Related Literature  

Real options, such as the option to delay investment, switch technology, or expand (grow) 

the business, are common in corporate finance. Real option theory plays a significant role 

in dynamic corporate finance models of irreversible investment.8 Real options like 

financial options, increase in value when the volatility of the underlying asset (risk) is 

higher. Additionally, since the pioneering work of Nishimura and Ozaki (2004, 2007), 

there is now a rich class of real option models under ambiguity that shows the distinct 

response of ambiguity from risk. Nishimura and Ozaki (2002), and Roubad et al. (2010), 

assume Choquet-based preferences following Schmeidler (1989). Nishimura and Ozaki 

 
8 For a survey, see Strebulaev and Whited (2012). 
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(2007), Riedel (2009), Thijssen (2011), Miao and Wang (2011), and Ferrari et al. (2022) 

adopt the multiple-priors preferences setting of Gilboa and Schmeidler (1989). Finally, 

Schröder (2011) builds his model from the 𝛼-MEU model of Marinacci (2002).9 

Our article is also related to the endogenous growth literature that studies the link 

between technological change and economic growth at the firm level. More specifically, 

our article is related to the ambiguity literature on the real business cycle (RBC) and 

the medium-term cycle (between 8 and 50 years) (see Ilut and Schneider, 2022). 

According to this literature, negative confidence shocks about current and future business 

conditions may have a significant negative effect, distinct from risk, on technological 

change and consequently on economic growth and stock prices. Kogan et al. (2017) find 

that investors’ valuations of technological innovation account for significant medium-

term fluctuations in TFP and economic growth. Similar results can be found in Bloom 

and Van Reenen (2000), using the IFS-Leverhulme database that covers more than 200 

major British firms. They find that patents have an economically and statistically 

 
9 The multiple-priors static model was introduced by Gilboa and Schmeidler (1989) and extended to a 
dynamic setting by Epstein and Wang (1994) and Epstein and Schneider (2003). One drawback of the 
multiple-priors approach is that it does not allow separation between ambiguity and ambiguity attitude. 
Alternative models that allow separation are the smooth ambiguity model of Klibanoff et al. (2005, 2009) 
and the 𝛼-MEU model of Marinacci (2002). As pointed out by Schröder (2020) and Beissner et al. (2020), 
𝛼-maxmin preferences can be dynamically inconsistent. Furthermore, the 𝛼-MEU model can become 
intractable in discrete time (Beissner et al., 2020). Smooth ambiguity preferences imply smooth (not 
kinked) indifference curves, which as discussed by Lang (2017) cannot explain inertia and inaction in the 
markets (Illeditsch, 2011; 2021). Also, most of the applied work using this model has been solved 
numerically.  
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significant impact on firm-level productivity and market value. Their analysis, which is 

based on risk only and ignores ambiguity, focuses on patent citations, which is a proxy 

for scientific value rather than economic value. Bloom (2007) argues that firms are much 

less responsive to technological change during periods of high uncertainty (in the narrow 

sense of risk) as shown by firms’ R&D expenditures.  

Furthermore, Epstein and Halevy (2019) have recently pointed out another 

dimension of ambiguity: correlation uncertainty, also referred to as heterogeneity 

uncertainty or unmeasured heterogeneity, which is distinct from classic ambiguity about 

first and second moments of the DGP driving business conditions. Correlation 

uncertainty may arise from unobserved contemporaneous and dynamic complementarities 

across production functions (Bryant, 1983; Baxter and King, 1991; Durlauf, 1991; and 

Cooper and Johri, 1997). Lee and Viale (2023), using the Penn World dataset covering 

more than 12 East Asian economies from 1954 to 2019, show that although negative 

confidence shocks about future business conditions have a significant impact on 

technological change proxied by TFP, correlation uncertainty is low in the region.  

Finally, we contribute to the literature that studies the transmission mechanism of 

climate-induced economic policies. Asano (2010), analyzes the effects that ambiguity may 

have on optimal environmental policies that seek to combat climate change. Millner et 

al. (2013) introduce scientific ambiguity into a dynamic integrated model of climate and 
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the economy (DICE) model of the climate-economic system. Cai and Lontzek (2019), 

develop a dynamic stochastic model of the transmission mechanism of climate within the 

climate-economic system. Barnett et al. (2020), provide a comprehensive theoretical 

framework to assess the transmission mechanism under ambiguity of climate change-

induced policies e.g., a carbon tax. We contribute, accordingly, by extending our 

understanding of climate ramifications and first order welfare effects due to the paralysis 

and indecision induced by ambiguity. 

 

3.  The Model 

In this section, we discuss the new Keynesian DSGE model of the economy that 

builds from the DSGE model under ambiguity of Ilut and Schneider (2014). New 

Keynesian DSGE models are standard in modern macroeconomics (see Smets and 

Wouters, 2007). The object of interest in our conceptual analysis is the individual firm. 

 

3.1. Technological Change and Production 

We start with the standard assumption of a Lucas-type production economy (Lucas, 

1988) indexed discretely by time 𝑡 ∈ [0, 𝑇 ] and a (finite) state-space Ω that represents 

the set of all {𝜔}𝜃=
Θ  plausible events in the economy with probability ℙ:ℱ ⟶ [0,1] ≡

∑ 𝑝
∈Θ

. A compact metric space with Borel 𝜎-algebra ℬ(Ω) completed by ℙ-null sets 
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and information structure {ℱ } =  defined by the history of realizations that defines the 

state-space of the economy 𝜔 ∈ Ω, where ℱ = {∅,Ω} and ℱ = 2 . Let 𝑢 = 𝜃 + 1 be 

the up state, and 𝑑 = 𝜃 − 1 the down state. One way to visualize this technical setup is 

as an event tree with time-state nodes (𝑡, 𝜔) and up and down branches.  

Final aggregate output is assumed to be produced by a continuum (with measure 

one) of competitive one-shot type of firms. Technology is represented by a stock of 𝑗 ∈

(0,⋯ , 𝐽) patents, investment projects, or production units that supply intermediate 

goods (the fruit) to the economy operated by 𝑛 ∈ [0, 𝑁] price-setting monopolistically 

competitive firms (the trees), owned by infinitely-lived investors. Aggregate output 𝑌  

(the numeraire) equals: 

𝑌 = ∫ 𝑌
−

d𝑛
−

,                                       (1) 

where 𝑌 = ∑ 𝑌  is the intermediate output from firm n; and 𝜆 determines the 

elasticity of substitution across goods. Intermediate output from the jth production unit 

in firm n is generated via homogeneous production functions of the form: 

𝑌 = 𝑀𝑎𝑥 𝑍 𝐾𝛼 𝛾 𝐿 − − Φ𝛾 , 0 ,                        (2) 

where 𝐾  denotes the stock of physical capital used in production unit j; 𝛼 ∈ (0,1) is 

the share of capital; 𝐿  denotes the use of specialized labor services supplied by 

competitive employment agencies that demand specialized labor from households who 

experience disutility from working; the time trend 𝛾  denotes the growth rate of human 
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capital that augments technical progress (Uzawa, 1965; Lucas, 2015); Φ represents fixed 

operating costs10 to run the production unit, measured in numeraire; and 𝑍  represents 

technological change or total factor productivity (TFP), with DGP possibly driven by 

endogenous and exogenous shocks, including economic agents’ confidence shocks about 

current and future business conditions (one dimension of ambiguity), and the degree of 

connectedness of the network of n firms (another dimension of ambiguity).  

 

3.2.  Productivity Shocks, Free Cash Flow in Operations and Managers’ Ambiguity   

Let 𝑝 ∈ (Ω,ℱ + , ℙ) denote the (𝑡, 𝜔)-one-step-ahead conditional probability i.e., 

the prior about the next step of the economy in the tree at 𝑡 + 1, which depends only on 

information available up to time t.11 Managers’ beliefs are assumed to conform to some 

model about the true (hidden) evolution of the state process {𝜔 }, some time-

homogeneous Markov chain 𝑋 (𝜔 = 𝜃) adapted to ℱ . Technological change in each 

production unit j follows the law of motion: 

𝑙𝑛𝑍 = 𝜇 (𝑋 ) + 𝜎 𝑢 − ,                                 (3)  

 
10 Overhead costs unrelated to the scale of the production unit and independent from technological shocks. 
For example, legal and labor costs that arise from the restructuration and/or reorganization of the business 
because of a merger or spinoff, a new regulation, and/or lawsuits (Bianchi et al., 2017). 
 
11 To achieve dynamic consistency it is critical to consider one-step-ahead conditional probabilities (Epstein 
and Schneider, 2013). 
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where 𝜇  is long-run productivity growth of production unit j in firm n, which depends 

on the latent state of the economy 𝑋 (𝜔𝜃); 𝜎  denotes the constant diffusion parameter; 

and 𝑢 −  is an i.i.d. normal zero-mean shock.  

Under ambiguity, managers’ beliefs instead of being represented by a single 

probability measure 𝑝 , are represented by a set 𝑃 ⊂ (Ω, ℱ + , ℙ) of multiple 

probability measures. Intuitively, managers’ lack of confidence about the latent state of 

the economy makes them entertain several models about the DGP driving technological 

change. Formally, they hold some common reference prior 𝑝̂ ∈ 𝑃  about next period’s 

state of the economy, but because of their lack of confidence, they entertain other 

plausible close distorted priors 𝑝 ∈ 𝑃 . We restrict the set 𝑃  to conform to the 

space of structured or statistically close parameterized models around the reference model. 

Moreover, to obtain well-behaved learning dynamics, we adopt the solution in Heyen 

(2014) and do not exclude the reference prior from the multiple-priors set at all times t. 

These technical conditions guarantee that the expected log-likelihood ratio between 

reference and distorted priors converges to the unconditional value of one-period relative 

entropy or Kullback-Leibler (KL) discrepancy 𝐷(𝑝‖𝑝̂) = −𝐸 𝑙𝑛
̂

 satisfying the bound: 

𝐷 𝑝 𝑝̂ ≤ 𝜂 ,                                          (4) 

where 𝐷 𝑝 𝑝̂  is a pseudo-metric as it is not symmetric and does not satisfy the 

triangular inequality; and 𝜂  is a parameter related to the level of confidence that the 
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manager has on the reference model. We note that the use of relative entropy follows 

from information theory where managers’ decision problem is viewed as a strategic game 

against Nature, which always picks the worst-case scenario from the set of all plausible 

states of the world, with probability 𝑝∗ ∈ 𝑃 .12  

For each production unit j in firm n, average productivity growth 𝜇  is perceived 

as ambiguous lying in the interval 𝜇 ,𝜇 = 𝜇̂ − 𝑧 , 𝜇̂ + 𝑧 , where 𝜇̂  can 

be interpreted as the benchmark productivity growth rate under some reference prior 

𝑝̂ , and 𝑧  is the loss or gain in productivity as a consequence of managers’ lack of 

confidence. If managers are confident about their reference models, then 𝑧 = 0 and 

the interval collapses to the singleton 𝜇̂ , with 𝜂 = 0 and (4) collapsing to an equality. 

Otherwise, 𝑧 > 0, 𝜂 > 0 and the size of the interval denotes the level of ambiguity in 

the production process of unit j as well as managers’ lack of confidence or ambiguity 

about the economy.  

Let’s consider the N-dimensional covariance-stationary DGP driving the joint 

dynamics of the productivity network of the n firms. A variance decomposition network 

analysis of contemporaneous and dynamic complementarities (productivity spillovers) 

will reveal the degree of connectedness of the network, which proxies for correlation 

uncertainty i.e., another dimension of ambiguity, which is especially relevant in firm level 

 
12 The worst-case scenario is the one with lowest productivity growth and lower aggregate output.  
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studies of economic growth. A persistent and highly connected network, in principle, 

should imply a low level of correlation uncertainty. On the other hand, an intermittent 

and disconnected network warrants a high level of correlation uncertainty. 

At each date t, a patent with obsolescence date T becomes available to firm n. 

Using the patent to run the production unit requires an immediate irreversible (sunk) 

investment 𝐼 > 0, and capital accumulation evolves by:13 

𝐾 + = (1 − 𝛿 )𝐾 + 1 − 𝜅 𝛾 − 𝐼 𝐼 −⁄ 𝐼 ,            (5) 

where 𝛿  is the rate of capital depreciation; 𝜅 > 0 is the internal rate of return; and the 

rest of the variables are defined as before. Let q  denote a vector of prices. The demand 

function for the nth firm is equal to 𝑞 =
( )

( )

−
, where the price of the final output 

(the numeraire) is set to 𝑞 = 1. Total revenues for the nth firm is equal to 𝑞 𝑌 (𝑋 ) =

𝑌 𝑌
− . Then, the production unit j stream of cash flows from operations (FCFO) is:  

𝛱 (𝑋 ) = 𝑞 𝑌 (𝑋 ) − 𝐼 − 𝜏 𝑞 𝑌 (𝑋 ) − 𝛿𝑞 − 𝐾 − − 𝐼 , (6) 

where 𝜏  is the corporate tax rate of firm n; and the rest of the variables are defined as 

before. Under ambiguity, managers are not confident about TFP, output/revenues, and 

the FCFO 𝛱 (𝑋 ) ≥ . We now discuss managers’ optimal behavior under ambiguity. 

 

 
13 Capital accumulation is subject to adjustment costs that increase with the scale of the business 
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3.3. Managers’ Optimal Investment Behavior under Ambiguity   

At each date t, the value of the patent used with obsolescence date T and free cash 

flow in operations 𝛱  is: 

𝑉 ∗ 𝛱 ≥ (𝑋 ) = min
∗∈

𝐸
∗

∑ 𝛱 𝑀
= +

𝑋 ,             (7) 

where 𝐸 ∗  denotes expectation under the worst-case probability measure 𝑝∗ ; 𝑀 > ∈

(0,1) with 𝑀 = = 1 is the pricing kernel or stochastic discount factor pricing all assets 

in the economy, which we are going to discuss in the next subsection; and the rest of the 

variables are defined as before.  

Let’s consider a project in firm n to build production unit j to obtain patented 

products 𝑌  with cost 𝐼  and future stream of cash flows 𝛱 (𝑋 ) ≥ , such that 

𝛱 < 𝐼 < 𝛱 . As we show in equation (2), managers’ decisions to use the patent 

are analogous to the decision of exercising an American financial call option with 

maturity T (Nishimura and Ozaki, 2007; Miao and Wang, 2011).  At each date t, the 

manager now faces an investment opportunity with the problem of choosing the (ℱ )-

stopping time 𝑡 ∈ [𝑡, 𝑇 ] that maximizes the value of the investment opportunity after 

the investment is made: 

𝑉 ∗ 𝛱 ≥ (𝑋 ) = max
≥

min
∗∈

𝐸
∗

∑ 𝛱 𝑀
= +

− 𝐼 𝑀 𝑋 .   (8) 

The value of the nth firm 𝑊  is the sum of the values of all active production units 

in the firm (the assets in place) and those waiting (the growth options). Following the 
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corporate finance literature, at each date t robust corporate managers run their firms 

with the goal to maximize shareholders’ value 𝑊 ∗  discounting the worst-case scenario. 

To this purpose they solve the following Hamilton-Jacobi-Bellman (HJB) backward 

dynamic functional equation (Nishimura and Ozaki, 2007; Miao and Wang, 2011):14 

𝑊 ∗ = max 𝑉 ∗ − 𝐼 , min
∗∈

𝐸
∗

𝑝∗ 𝑊 𝑉 + 1 − 𝑝∗ 𝑊 𝑉 ,      (9) 

The economic interpretation of managers’ dynamic maxmin optimization problem 

is as follows. The first term in the right-hand side is the value of all the projects that 

result from exercising the option to invest now (the sum of all active projects at time t 

or assets in place) and the second term to wait (the sum of all projects waiting or growth 

options). At each date t, robust managers solve first the inner constrained minimization 

problem in order to identify the worst-case scenario with probability measure 𝑝∗ , and 

then solve the stopping time problem. This allows the manager to calculate the certainty 

equivalent of the continuation value function 𝑊  under the worst-case scenario 

probability measure 𝑝∗ .  

If we assume managers to be ambiguous about the future stream of cash flows only, 

that is, they are confident about the termination values of their projects, then the 

threshold value that makes them indifferent between investing and waiting is 𝑉 ∗ = 𝐼 . 

 
14 In general, it will be difficult to derive an analytic solution to the HJB equation. It can be simplifed if 
one assumes i.i.d. ambiguity and an infinite planning horizon (see Nikimura and Ozaki, 2007, section 3.5). 
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In any case, the option value to invest now and the option value of waiting, both decrease 

with ambiguity. The former effect dominates the latter and consequently the manager 

delays the investment. However, if managers have zero confidence on current and future 

business conditions, then ambiguity may erode away the option value from waiting and 

managers will choose to invest now. In this case, robust managers end up adopting a 

myopic NPV investment rule, always discounting the worst-case scenario without regret, 

and the value of the firm is simply the present value of all future cash flows from projects 

with positive NPVs (Miao and Wang, 2011).  

Note that even if one assumes risk neutral managers, risk enters into the model as a 

mean-preserving spread over the reference prior 𝑝̂ ∈ 𝑃 , affecting positively the option 

value to wait. The trascendental insight from standard investment theory under only 

risk, is that an increase in risk will allow managers to capture the upside gains and 

minimize the downside loss of waiting. 

 

3.4. Robust Asset Prices and Innovation Market Diffusion  

On the investor side, we follow García-Feijóo and Viale (2022) and assume robust 

investors with endowment comprised of 𝑛 ∈ [1,𝑁] trees or assets with supply normalized 

to one plus government transfers equal to 𝜏 𝛾 . Gross returns are defined as   

−
≡ 𝑅 = exp ∑ 𝑟

=
𝑅 , with 𝑅  given, and following the law of motion 
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𝑟 ≡ 𝑙𝑛𝑅 = 𝑚 (𝑋 ) + 𝜎 𝑣 , where 𝑚  is the expected long-run mean return, which 

depends on the latent state of the economy 𝑋 (𝜔 ); 𝜎  denotes the constant diffusion 

parameter or standard deviation of asset n; and 𝑣  is an i.i.d. normal zero-mean shock. 

There is also a risk-free asset in zero net supply that pays a constant gross return 𝑅 =

exp 𝑟 . Then, the gross return of the representative shareholder or investor’s wealth at 

time t is equal to 𝑅 = 𝑅 + ∑ 𝜉 − 𝑅
=

, where 𝝃 is a column vector of portfolio 

shares invested in the 𝑛 + 1 assets. 

Like robust managers, under ambiguity robust investors with multiple-priors 

preferences are not confident about current and future business conditions and solve at 

each date t a maxmin optimization problem in the same spirit of (9) satisfying bound 

(4). But investors seek to maximize the long-run mean growth rate of wealth assessing 

period by period each candidate portfolio under the worst-case scenario.15 Under 

ambiguity, the optimal portfolio allocation 𝝃∗ = 𝜮− 𝒎∗ is the one that maximizes the 

reward to risk ratio or Sharpe’s ratio under the worst-case return distribution with mean 

return 𝒎∗ and variance 𝜮.  

  In the general dynamic case for 𝑡 = {0,1, . . , 𝑇 − 1}, the size of the multiple-priors 

set changes over time with the arrival of new information, and robust investors optimize 

 
15 The worst-case scenario for a long position in the asset is the distribution with lowest mean return. On 
the other hand, the worst-case scenario for a short position in the asset is the distribution that has the 
highest mean return. 
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solving the following recursive Hamilton-Jacobi-Bellman (HJB) functional equation (see 

e.g., Viale et al., 2014):  

𝐽 = max
{ }

𝑈(𝐶 ) + min
∗∈

𝐸
∗

𝑝∗ 𝐽
+ + + 1 − 𝑝∗ 𝐽

+ + ,      (10) 

  s. t. 𝐶 + 𝒒𝝃 𝝃∗ = (1 − 𝛼)𝑌 + 𝑅 − − 𝜏 [(1 − 𝛼)𝑌 + 𝑅 − ] − 𝜏 𝐶 ,      (11) 

where without loss of generality 𝐽  denotes marginal indirect utility of wealth; 𝑈(𝐶 ) is 

utility on consumption 𝐶 , which is assumed to be increasing and concave; (11) is the 

budget constraint; 𝒒  is the transposed vector of asset prices; 𝜏  and 𝜏  represent the 

tax bill on labor income and consumption, respectively; and the rest of the variables are 

defined as before. 

Under some technical conditions (see Epstein and Wang 1994, Lemma 1, Theorems 

2, 3, and 4), the optimal maxmin solution of the HJB equation (10) leads to the 

fundamental asset pricing equation: 

𝐸
∗

𝑅 + 𝑀 +
∗ |𝑋 = 1,                                      (12) 

Where 1 denotes a vector of ones; 𝑅 +  is a vector of test assets gross returns that includes 

the set of primitive assets (including the safe asset) plus the set of all plausible ℱ -

adapted portfolio strategies;16 𝑀 +
∗ ≡

( + + )

( )
 is the robust admissible stochastic 

 
16 Test asset returns are assumed to belong to the linear space 𝐿 (Ω, ℱ + , ℙ) of random variables with 
finite second moments adapted to the information set ℱ .   
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discount factor (SDF) or pricing kernel that prices all assets in the economy under the 

worst-case scenario probability measure 𝑝∗ . ∈ 𝑃 .17  

  

3.5. The Government and Climate Policy Risk  

 We close the section with the following warning. We do not seek to model formally 

the goverment. Like Bianchi et al. (2017), we just assume that the government is an 

agency that collects taxes and transfers lump sums to balance its budget. However, 

because of our research goal, we acknowledge the potential role of the government to 

induce the structural economic change required to transition to a green economy by 

introducing necessary incentives to managers and investors alike, probably changing the 

tax bill and transfers across different economic sectors, as shown in equations (6) and 

(11). As we explain next, we use a climate policy risk index based on textual analysis on 

news as proxy of shifts in climate policies. In any case, the government should always 

satisfy the usual market clearing condition in the goods markets: 𝐶 + 𝐼 +

𝜏 𝑞 𝑌 − 𝛿𝑞 − 𝐾 − − 𝐼 +𝜏 [(1 − 𝛼)𝑌 + 𝑅 − ] + 𝜏 𝐶 − 𝜏 𝛾 = 𝑌 . 

 

 
17 Some random variable satisfying 𝑀 +

∗ ∈ 𝐿2(Ω, ℱ𝑡+1, ℙ) given the absence of arbitrage opportunities 
at all dates t. Moreover (12) guarantees that assets are priced in the economy to clear the capital markets. 



25 
 

4.  Data 

4.1. Firm Level Data  

The sample includes annual data from the fiscal years 1994 through 2019. The firm 

level data used in the empirical analysis is drawn from the patent dataset constructed by 

Kogan et al. (2017)18 and the CRSP/COMPUSTAT merged database. The KPSS patent 

database includes 1,801,879 patents granted in the U.S. by the U.S. Patent and 

Trademark Office (USPTO), collected from the entire history of U.S. patent documents 

in Google Patents (7.8 million patents) and complemented with the hand-collected 

reference data of Nicholas (2008). The final dataset was obtained by matching it with 

the NBER and CRSP databases to eliminate duplications. For a detailed explanation of 

the construction process of the patent dataset, please see Kogan et al. (2017). From this 

dataset, we use the patents private economic value; the number of patents granted; and 

number of citations. In Figure 2 we plot the log change of patent valuations, number of 

patents granted and their citations.  

Firm level data from the CRSP/COMPUSTAT merged database includes annual 

total revenues in USD billions; leverage, calculated as the ratio of the sum of long-term 

debt and debt in current liabilities to the total value of stockholders equity; end of year 

 
18 https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-
Data. 
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market capitalization in USD billions; Tobin’s Q, calculated as the ratio of total assets 

plus the book value of equity minus common ordinary equity to total assets; and Total 

R&D expenditures, normalized by the amount of total assets both in USD billions.  

For comparative purposes, we group firms into two groups: 1) Green firms with 

patents related to climate change mitigation technologies in any kind of industrial 

processing or production activity (USPTO subclass CPC Y02, excluding brown firms), 

and 2) brown firms from the energy, utility, petrol production and extraction industries.  

 

4.2. Ambiguity and Risk Factors  

In the financial economics literature, ambiguity has been measured using different 

proxies, such as disagreement in survey forecasts; implicit market volatility (VIX); the 

variance risk premium (VRP); macroeconomic and financial uncertainty indexes; and the 

Kullback-Leibler divergence measure between transition probabilities.  

Jurado et al. (2015) point out that disagreement in survey forecasts is likely to be a 

weak proxy for ambiguity, because forecasts will be affected by heterogeneity in 

characteristics and not necessarily by confidence shocks. Similarly, VIX is a volatility 

index rather than an ambiguity index. Aït-Sahalia et al. (2021) and García-Feijóo and 

Viale (2023) show that there is a time-varying disconnection between VIX and ambiguity 

in the stock market. On the other hand, VRP is driven by shifts in stochastic risk aversion 
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and hence may not be a clean proxy for investors’ ambiguity aversion (Bekaert et al., 

2013, 2020). We note that most of the financial and macroeconomic uncertainty indexes 

in the literature are based on the intuition that the source of uncertainty resides in the 

lack of precision of agents’ forecasts. 

We use the ambiguity index KUNC of Viale et al. (2014) as a forward looking proxy 

of ambiguity about current and future business conditions. Given that is based on the 

Kullback-Leibler divergence, unlike the other ambiguity measures, this proxy is 

consistent with the ambiguity literature in economics and finance and displays properties 

desirable in an empirical measure of ambiguity. The empirical construction of KUNC is 

based on Good (1965), who argues that robust Bayesian statisticians should use a set of 

priors rather than a single prior in solving complex inference problems.  

Correlation uncertainty is proxied by the degree of connectedness of total factor 

productivity (TFP). To this purpose, we follow Diebold and Yilmaz (2014) and calculate 

the connectedness index between the TFP of a group of 19 leading innovating economies 

across East Asia, Europe, the Middle East and America.19 Intuitively, the estimation 

procedure seeks to assess the share of forecast error variation in the sample of returns 

due to unobservable shocks. We measure the degree of connectedness using the package 

 
19 The dataset is drawn from the Penn World Table (PWT) version 10.0 constructed by Feenstra et al. 
(2015). Our sample includes TFP series for the U.S., Denmark, Finland, Germany, Israel, the Netherlands, 
Sweden, Switzerland, Mainland China, Hong Kong SAR (China), India, Indonesia, Japan, Republic of 
Korea, Malaysia, Philippines, Singapore, Thailand, and Taiwan (Taipei, China). 
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in R v.0.2.1 developed by Baruník and Krěhlík (2018), with a forecasting window for the 

VAR of 36 months and 60 months.  

We plot the time series of KUNC and TFP connectedness in Figure 3. Ambiguity is 

highest during the 2001 and 2008 economic recessions. It has been low since 2009, 

probably because of the unprecedented accommodative monetary policy of the Federal 

Reserve. On the other hand, correlation uncertainty has been decreasing consistently, 

given that the degree of connectedness of the productivity network has been increasing, 

at an accelerating pace since 2014.  

As our proxy of climate risk, we use the climate policy uncertainty index of 

Gavriilidis (2021). This index is constructed using textual analysis from news in eight 

major U.S. newspapers that capture important events related only to climate policy. 

According to the author, this index has a strong and negative effect on carbon emissions, 

both at the aggregate and sector level. Engle et al. (2020), also apply textual analysis to 

construct a climate change news index, but the news come from articles only in the Wall 

Street Journal (WSJ) and includes other news related to climate change like e.g. natural 

disasters. In robustness check analyses, we use the CBOE market implicit volatility index 

VIX (not seasonally adjusted) as a proxy for market risk. 

In Figure 4, we plot the climate policy risk index and VIX. Market volatility has 

been decreasing persistently since the end of the financial crisis of 2008. On the other 
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hand, climate policy risk has been increasing since 2006, accelerating its pace since 2017, 

probably as a result of news from the U.S. about leaving the Paris accord. 

We provide a description of the variables and their corresponding sources in Table 1. 

Summary statistics of firm level variables are provided in Table 2. In Table 3, Panel A, 

we provide summary statistics of the proxies used for risk and ambiguity. In Panel B, we 

report their correlation matrix.   

Note that the typical green firm has a patent with an average market valuation that 

is 2.5 times the average value across all firms, and 1.73 times higher than the value of 

the patent from a typical brown firm. Moreover, the average number of patents granted 

and citations are both significantly higher for green firms than the rest of the firms. From 

Table 2, one can characterize the typical green firm with size and leverage similar to the 

typical brown firm, but both larger and less leveraged than the rest of the firms in the 

sample.  

      

5.  Quantitative Implications  

5.1. Comparative Static Longitudinal Analyses: Green versus Brown Firms 

A well-known fact of multiple-priors preferences models that restrict ambiguity to 

conditional means only, is that they can be solved and estimated using simple first order 

approximations.  
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Our first step in the empirical analysis, is to inspect if, consistent with theory, private 

economic valuations of patents, 𝑃𝑎𝑡_𝑣𝑎𝑙𝑢𝑒, are contemporaneously related to i) climate 

policy risk Crisk, ii) investors’ ambiguity about current and future business conditions 

Kunc, iii) correlation uncertainty Tfpcon, and iv) patents’ scientific values Pat_cites. 

We control for firm-level variables such as sales, leverage, size, and Tobin’s Q tq, which 

the corporate finance literature finds to be related with innovation. We also include two 

time dummies for the year 2000 and 2017. The year 2000 dummy controls for the 

American Inventors Protection Act (AIPA) coming into effect; and the year 2017 dummy 

controls for the impact (if any) of the election of President Trump.  

We run the following within-industry groups and pair-wise differenced fixed effects 

PD regression in natural logs, so that we can interpret estimated coefficients 𝛽 as (market 

valued) productivity elasticities:20  

𝑙𝑛_𝑝𝑎𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝛼 + 𝛽 𝑙𝑛_𝑐𝑟𝑖𝑠𝑘 + 𝛽 𝑙𝑛_𝑘𝑢𝑛𝑐 + 𝛽 𝑙𝑛_𝑡𝑓𝑝𝑐𝑜𝑛 +

𝛽 𝑙𝑛_𝑝𝑎𝑡_𝑐𝑖𝑡𝑒𝑠  + 𝛽 𝑙𝑛_𝑠𝑎𝑙𝑒𝑠 + 𝛽 𝑙𝑛_𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 + 𝛽 𝑙𝑛_𝑠𝑖𝑧𝑒 +

𝛽 𝑙𝑛_𝑡𝑞 + 𝜆 = + 𝜆 = + 𝜓 + 𝑠 + 𝜀 ,                                                 (13) 

where 𝛼 is a constant; the variables included in the regression are defined in Table 1;  𝜓  

is a firm specific dummy for unobserved fixed effects; 𝑠  is a time specific dummy for 

unobserved fixed effects; and 𝜀  is the error term.  

 
20 Results from the ubiquitous Hausman test, not provided to save space, lead us to reject the null 
hypothesis in favor of fixed effects panel data models. 
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 In the first column of results in Table 4, we report PD fixed effects (Fe) econometric 

estimates across all industries with robust standard errors adjusted by industry (SIC) 

clusters. In Table 5, we report estimates for green firms, and in Table 6, for brown firms. 

The high value of residual correlations across panels (from 0.42 to 0.82) suggests the 

presence of cross-sectional dependence across SIC clusters. Thus, we assess the potential 

model misspecification running more robust PD regressions.  

First, we run regression (13) using a robust Prais-Winsten estimator with panel-

corrected standard errors (Prais and Winsten, 1954). Robust econometric Prais-Winsten 

estimates (P-W) are reported in the second column of results in Tables 4, 5 and 6. For 

the full sample in Table 4, estimated coefficients are significantly different from zero at 

the 1% level for climate policy risk (ln crisk), investors’ ambiguity about current and 

future business conditions (ln kunc), correlation uncertainty (ln tfpcon), and patents’ 

scientific value. The firm specific variables and the year 2000 dummy are also statistically 

significant but the year 2017 dummy is not. Moreover, all variables have the correct sign 

as hypothesized by theory. That is, investors’ real option valuations increase with climate 

policy risk, a more connected productivity network, patents’ scientific values, firm’s sales, 

size, and Tobin’s Q. On the other hand, investors’ real option valuations decrease with 

ambiguity about current and future business conditions and firm leverage.  
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 Next, we run PD regression (13) using the robust MM estimator of Gervini and Yohai 

(2002) with 85% efficiency and robust standard errors adjusted by industry clusters. A 

comparison of results reported in column (P-W) and column (MM), shows that except 

for correlation uncertainty and Tobin’s Q, the rest of the variables are economically 

significant and robust to model misspecification. As shown in Table 4, investors’ 

valuations increase by 0.3286% for a 1% shock in climate policy risk; by 0.1180% for a 

1% increase in the patent’s scientific value; by 0.2771% for a 1% increase in the firm 

sales; and by 0.2934% for a 1% increase in the firm size. On the other hand, valuations 

decrease by 0.1669% for a 1% increase in ambiguity about business conditions; and 

decrease by 0.1296% for a 1% increase in leverage.  

 We report results for green firms in Table 5. Robust (MM) estimates are statistically 

significant for ln crisk, ln kunc, ln pat cites, ln tq, and the year 2000 dummy. 

Economically, investors’ valuations increase by 0.2532% for a 1% increase in climate 

policy risk; by 0.0820% for a 1% increase in patent’s scientific value; by 0.7916% for a 

1% increase in Tobin’s Q; and they decrease by 0.1913% for a 1% increase in investors’ 

ambiguity.  

 By contrast, in Table 6, for brown firms, only ln kunc and the year 2000 dummy 

are statistically significant. Climate policy risk does not seem to impact investors’ 

valuations, but a 1% increase in investors’ ambiguity decreases investors’ valuations by 
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0.2603%, relatively more than valuations of patents from green firms in Table 5. This 

finding is consistent with Ilhan et al. (2021) who find that the cost of option protection 

against downside (left) tail risk is larger for firms with more carbon-intense business 

models. 

 

5.2. Transitional Dynamics: The Impact of Temporary Shocks 

We now proceed to examine the impact that temporary shocks to climate policy risk, 

investors’ confidence on current and future business conditions (i.e., the first dimension 

of ambiguity), correlation uncertainty (i.e., the second dimension of ambiguity), and 

patents’ scientific values may have on the dynamic behavior of investors’ private 

valuations of patents. The empirical specification of the dynamic model is as follows: 

𝑙𝑛_𝑝𝑎𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝛼 + ∑ 𝜌
=

𝑙𝑛_𝑝𝑎𝑡_𝑣𝑎𝑙𝑢𝑒( − ) + 𝛽 𝑙𝑛_𝑐𝑟𝑖𝑠𝑘 +

∑ 𝛽
=

𝑙𝑛_𝑐𝑟𝑖𝑠𝑘( − ) + 𝛽 𝑙𝑛_𝑘𝑢𝑛𝑐 + ∑ 𝛽
=

𝑙𝑛_𝑘𝑢𝑛𝑐( − ) +

𝛽 𝑙𝑛_𝑡𝑓𝑝𝑐𝑜𝑛 + ∑ 𝛽
=

𝑙𝑛_𝑡𝑓𝑝𝑐𝑜𝑛( − ) + 𝛽 𝑙𝑛_𝑝𝑎𝑡_𝑐𝑖𝑡𝑒𝑠 +

∑ 𝛽
=

𝑙𝑛_𝑝𝑎𝑡_𝑐𝑖𝑡𝑒𝑠( − ) + 𝛽 𝑙𝑛_𝑠𝑎𝑙𝑒𝑠 + 𝛽 𝑙𝑛_𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 +

𝛽 𝑙𝑛_𝑠𝑖𝑧𝑒 + 𝜆 = + 𝜆 = + 𝜓 + 𝑠 + 𝜀 ,       for 𝑡 = 𝑞 + 1, ⋯ , 𝑇 ,            (14) 

where variables’ definitions are provided in Table 1; k is the lag order of the DGP; q=k 

is the maximum lag order, without any loss of generality we assume an AR(1) process;  

𝜓  is a firm specific dummy for unobserved fixed effects; 𝑠  is a time specific dummy for 
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unobserved fixed effects; and 𝜀  is the error term. Note that we drop Tobin’s Q from 

the control variables because of its poor results in static PD regressions. As pointed out 

by Woeppel (2022), the weak explanatory power of standard proxies for Q most likely is 

the result of substantial measurement error.  

In Table 7, we report econometric estimates of the system-GMM dynamic panel data 

model (14) across all industries. In Table 8, we report estimates across green firms and 

in Table 9, across brown firms. In all cases, we use the continuous updating GMM (CUE-

GMM) estimator of Hansen, Heaton, and Yaron (1996) implementing Kripfganz (2019) 

xtdpdgmm package in STATA. The implementation incorporates linear and nonlinear 

moment conditions as suggested by Ahn and Schmidt (1995). Robust standard errors are 

adjusted by industry clusters.  

We summarize the main econometric results as follows. There is a dynamic impact of 

climate policy risk, which is positive and statistically significant at a 1% level, for all 

industries and for green firms, but not for brown firms. The dynamic impact of ambiguity 

is negative and statistically significant at a 1% level across all industries, and more 

significant for brown companies than for the rest of firms. With respect to correlation 

uncertainy, lagged shocks are statistically and economically significant at a 5% level for 

all industries and for green firms but not for brown firms.  
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5.3. The Transmission Mechanism of Climate Policy Risk, Ambiguity, and Innovation  

In this section, we analyze long run (permanent) transitional dynamics, which will 

allow us to understand the transmission mechanism for the impact of climate policy risk 

and of both dimensions of ambiguity on investors’ market valuations of firms’ growth 

opportunities. At the same time, we investigate any possible dynamic interaction between 

climate risk, investors’ ambiguity about business conditions, and correlation uncertainty.  

 We analyze the long run (10 years) transitional dynamics through the estimation of 

a first-order non-structural panel vector-autoregression (VAR) across all firms, following 

the econometric approach developed by Holtz-Eakin et al. (1998). In Table 10, we report 

econometric estimates of a panel VAR that includes 𝑙𝑛_𝑝𝑎𝑡_𝑣𝑎𝑙𝑢𝑒 , 𝑙𝑛_𝑐𝑟𝑖𝑠𝑘 , 𝑙𝑛_𝑘𝑢𝑛𝑐 , 

𝑙𝑛_𝑡𝑓𝑝𝑐𝑜𝑛 , and 𝑙𝑛_𝑝𝑎𝑡_𝑐𝑖𝑡𝑒𝑠 , including results from Granger’s non-causality (Granger 

1969) and stability tests. In Table 11 we report results from the variance decomposition 

analysis and plot orthogonalized impulse-response functions in Figures 5 and 8. Results 

for green firms are reported in Table 12 (panel VAR estimates) and Table 13 (variance 

decomposition analysis, up to 5 years only).  

The 5 years dynamic behavior of the transmission mechanism is assessed through 

impulse response functions obtained from local projections obtained from previous PD 

regression estimates, with the addition of a dummy for the year 2008 as control for the 

economic recession. IRFs from local projections constitute a robustness check on possible 
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model misspecification in the estimation of non structural VARs. Comparative results 

(not shown to save space) confirm that this is the case for green firms as a result of its 

relatively small sample. In Figures 6 and 7 we plot the IRFs for all firms and green firms, 

respectively. 

We highlight the following results. Climate policy risk and both dimensions of 

ambiguity (Granger causes)21 the market valuations of firms’ growth opportunities. 

Furthermore, investors’ confidence shocks have a persistent negative impact on 

innovation valuations contributing up to 38.92% of the variation of investors’ valuations 

at the end of five years. Moreover, investors’ confidence shocks also have a persistent and 

significant contribution of 77.31% to, and increasing, correlation uncertainty adding an 

indirect effect on market valuations of firms’ innovations (Figure 8). Moreover, there is 

a short lived, indirect effect that works through climate policy risk (with a one period 

lag) contributing up to 16.73% of the variation in climate policy risk (decreasing it) as 

shown in Figures 7 and 8.  

Climate policy risk and correlation uncertainty contributions are less significant, 

equal to 1.34% and 3.68%, respectively (Figures 8 and 9). However, for green firms there 

is a significant impact from (lower/higher) climate policy risk (decreasing/increasing) 

 
21 One well-known caveat with the Granger non-causality test, is that it does not confirm true causality 
given the effect of some confounding unobserved variable driving variables. For a complete discussion, see 
Clive Granger’s revised Noble Prize lecture (Granger, 2004) 
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economic agents’ confidence, adding up to 35.80% of the variation of investors’ ambiguity 

after five years (Table 13). Consistent with our results, Ilhan et al. (2021) find that 

climate policy uncertainty has some effect on VRP, a proxy for ambiguity. We also 

observe that permanent shocks are decaying through time with a half life of 2 ½ years 

for all firms, including green firms. 

 

5.4. Robustness Checks  

We close the empirical analyses with the following robustness checks. First, we look 

into the effect of climate policy risk and both dimensions of ambiguity on firms’ R&D 

expenditures. In Tables 14, 15, and 16 we provide results from static PD regressions for 

all firms, green firms, and brown firms, respectively. Our results are consistent with those 

in the existing literature. Bloom (2007) finds that R&D expenditures are relatively more 

persistent than sales/revenues and earnings and have a time-varying relation with risk. 

Moreover, R&D expenditures are considered in the literature a proxy of innovation input 

rather than output of innovative activities within the firm (Hall et al., 2007). 

In Tables 17, 18, and 19 we provide results from running count regressions on the 

number of patents granted using a Poisson GEE population-averaged estimator. Except 

for correlation uncertainty, the results are similar to those obtained using patents’ 
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valuations. A highly connected productivity network entails lower correlation uncertainty 

propping up firms’ investments in innovations and aggregate economic growth.  

Finally in Tables 20, 21, and 22 we provide estimates of PD static regressions using 

VIX instead of climate risk. Like climate risk, VIX has a statistically and economically 

significant positive impact on investors’ patent valuations as expected from the dynamic 

corporate finance literature on irreversible investment.  

  

6. Concluding Remarks 

Consistent with real option theory under ambiguity, we show that climate policy 

risk has a significant positive impact on the market valuations of firms’ growth 

opportunities and firms’ innovations, except for brown firms. Confidence shocks about 

current and future business conditions have a significant negative effect on valuations of 

firms’ growth opportunities and firms’ innovations for all firms, with a significantly higher 

impact for brown firms. A highly connected productivity network with lower correlation 

uncertainty also has a positive effect on firms’ innovations, in particular for green firms. 

The empirical study reveals a distinct market reaction for green and brown firms. 

We find that climate policy risk has little effect on the market valuations of patents from 

brown firms, but a significant impact for green firms. This is somewhat surprising, 

because Cohen et al. (2023) show that energy firms’ patents are mostly dedicated to 
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green research. However, we also find that the market valuation of patents from brown 

firms react significantly more to confidence shocks than those from green firms and 

consequently exhibit valuations well below those of green firms. In this regard, the results 

suggest that there is a disconnect between brown innovators and ESG-driven 

investments, probably as a result of current governmental policies, as argued by Cohen 

et al. (2023). One relevant question we explore in a separate asset pricing paper, is if this 

disconnect is priced in the cross-section of stocks returns. 

Our results have important implications for a successful transition to a sustainable, 

environmentally, and socially responsible green economy, because ambiguity unlike risk 

has first-order welfare (permanent) effects with the potential to generate inertia and 

inaction in the adoption of new green technologies.  
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Table 1. Variable Definitions 

This table provides the description and source of the variables used in empirical analyses. 

 

Dependent Variables Description Source 

pat_value Patents private economic value Kogan, Papanikolaou, Seru 
& Stoffman (2017) 

pat_count Number of patents granted Kogan, Papanikolaou, Seru 
& Stoffman (2017) 

rnd_assets                   R&D expenditures/total assets 
in billions of USD 

CRSP/COMPUSTAT 
merged database 

Explanatory Variables   

pat_cites 
 

Number of citations on patents 
i.e., proxy for patents scientific 
value 

Kogan, Papanikolaou, Seru 
& Stoffman (2017) 

crisk Climate policy risk index Gavriilidis (2021) 

Kunc Investors‘ ambiguity or 
Knightian uncertainty index 

Viale, García-Feijóo & 
Giannetti (2014) 

tfpcon TFP Connectedness/correlation 
uncertainty index  

Penn World Table from 
Feenstra et al. (2015)  

VIX CBOE volatility index FRED database 

sales Total revenues in Billions of 
USD 

CRSP/COMPUSTAT 
merged database. 

leverage (Debt in current liabilities + 
Long term debt) / Total equity 

CRSP/COMPUSTAT 
merged database 

Size (ME) Market value in billions of USD CRSP/COMPUSTAT 
merged database 

tq Tobin’s q (Total assets + Book 
value of Equity – Common 
equity) / Total assets 

CRSP/COMPUSTAT 
merged database 

year2000 American inventors Protection 
Act (AIPA) November 2000 
 

 

year2017 U.S. election results   
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Table 2. Summary Statistics – Firm Specific Variables 

This table provides the description and source of the variables used in empirical analyses. 

 
Variables # Obs. Mean Std. Dev. Min Max 
Total Firms      
pat_value 10497 35.50  144.04 0.00 4357.90  
pat_count 10497 2.84 8.41 0.00 127 
pat_cites 10497 85.42 410.96 0.00 13679 
rnd_assets                  10497 0.01 0.03 0.00 1.06 
sales 10497 54681.23 175017.80 -1366.74 3600928 
leverage 10497 2.62 145.13 -12595.61 6241.89 
size 10497 61672.29 197912.70 0.00 4102966 
tq 10497 2.14 37.24 0.35 3780.73 
Green firms      
pat_value 933 90.31 211.28    0.00 3524.36 
pat_count 933 9.36   18.17         1.00 114 
pat_cites 933 252.35   642.31          0.00 5255 
rnd_assets                  933 0.033  0.03          0.00 0.21 
sales 933 104989.50   184138.40     87.80    1625715 
leverage 933 2.23   4.20 -7.99   89.18 
size 933 160262.60   345177.90   49.25   4102966 
tq 933      1.81   0.75   0.72   7.28 
Brown firms      
pat_value 650      51.85   124.48          0.00 1243.21 
pat_count 650      1.89   2.65 0.00 14 
pat_cites 650 36.94   82.89          0.00 686 
rnd_assets                  650 0.00   0.01 0.00 0.07 
sales 650       161249.60   451327.70          0.00 3600928 
leverage 650           2.01   1.51  -4.40    16.30 
size 650 159464.70   364407.20     3.16    2922882 
tq 650 1.40   0.64   0.71   12.21        
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Table 3. Summary Statistics – Risk and Ambiguity Factors 

This table provides summary statistics and correlation matrix between risk and ambiguity 
factors used in empirical analyses for the sample period 1994-2019, t-stats in black denote 
significance at 95% level. 

 

Panel A – Summary Statistics  

Variables # Obs. Mean Std. Dev. Min Max 

crisk 26 104.26 48.62 47.86 242.88 

kunc 26 0.18 0.24 0.08 0.99 

tfpcon 26 0.79 0.03 0.74 0.84 

VIX 26 19.43 5.91 11.09 32.70 

 
 
 Panel B – Correlation Matrix 

 ln tfpcon ln kunc ln crisk 
ln tfpcon  -0.07 -0.02 
ln kunc   0.23 
ln crisk    

 
 t-values – 95% signifcance level (t-critical: 2.07) 

 ln tfpcon ln kunc ln crisk 
ln tfpcon  0.33 0.10 
ln kunc   1.10 
ln crisk    
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Table 4. Robust Static Model - Private Economic Value of Technology (All Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for all firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel 
sizes with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini 
and Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là 
Huber (1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich 
estimator. The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not 
different. Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, 
and * = 10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 4,869 / MM = 4,832           # SIC Groups: Fe&P-W = 367 / MM = 330 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk 0.3350 0.2838 0.3286 7.88/11.45 0.00***/0.00*** 
 (0.0426) (0.0360) (0.0287)   
ln kunc -0.1700 -0.1536 -0.1669 -11.70/-15.75 0.00***/0.00*** 
 (0.0134) (0.0131) (0.0106)   
ln tfpcon 1.6305 4.126 0.6691 7.40/1.69 0.00***/0.09* 
 (0.5565) (0.5578) (0.3958)   
ln pat_cites 0.1410 0.1843 0.1180 16.98/8.83 0.00***/0.00*** 
 (0.0164) (0.0108) (0.0134)   
ln sales 0.2085 0.3150 0.2771 5.86/2.69 0.00***/0.01*** 
 (0.1692) (0.0538) (0.1031)   
ln leverage -0.1063 -0.1299 -0.1296 -3.94/-3.20 0.00***/0.00*** 
 (0.0484) (0.0330) (0.0405)   
ln size 0.4120 0.3649 0.2934 7.42/3.06 0.00***/0.00*** 
 (0.1421) (0.0492) (0.0958)   
ln tq 0.1083 0.2427 0.2869 2.65/1.93 0.01***/0.06* 
 (0.2180) (0.0916) (0.1490)   
year 2000 1.0210 0.9714 1.050 12.91/17.66 0.00***/0.00*** 
 (0.0727) (0.0753) (0.0595)   
year 2017 0.0579 0.0666 0.0960 1.03/1.82 0.30/0.07* 
 (0.0838) (0.0648) (0.0527)   
𝛼 -3.6286 -3.9272   0.00***/0.00*** 

 (0.7034) (0.1969)    
Statistics                     
𝑅  0.5600 0.5471 Wald-𝜒 (10) = 501.87  
𝐹(10,366) 38.46 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  1.24            M-estimator = 3.44  
𝜎  0.85  S-estimator = 1.55  
𝜌 ,  =  0.19  Scale = 0.89  
𝜌 =  0.68 [0,0.82] Efficiency = 85%  
Hausman-𝜒 (10) =  25.21     
p-value (0.0050)     
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Table 5. Robust Static Model - Private Economic Value of Technology (Green Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for green firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with 
heteroskedastic panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific 
autocorrelations by panel sizes with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust 
MM estimator of Gervini and Yohai (2002) that combines an initial high breakdown S estimator with a subsequent 
redescending M estimator a là Huber (1973). Robust standard errors in parenthesis are adjusted by industry clusters and 
calculated using the sandwich estimator. The Hausman test between models at the bottom of the table has null hypothesis 
that all coefficients are not different. Statistical significance is reported as follows: *** = 1 % statistical significance, ** 
= 5% statistical significance, and * = 10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 815 / MM = 791                   # SIC Groups: Fe&P-W = 121 / MM = 98 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk 0.2451 0.1924 0.2532 1.91/3.66 0.06*/0.00*** 

 (0.0939) (0.1005) (0.0692)   
ln kunc -0.1716 -0.1708 -0.1913 -4.63/-6.81 0.00***/0.00*** 
 (0.0435) (0.0369) (0.0281)   
ln tfpcon 0.4518 1.6076 0.2244 1.37/0.23 0.17/0.82 
 (1.0034) (1.1702) (0.3958)   
ln pat_cites 0.1094 0.1499 0.0820 5.88/2.54 0.00***/0.01*** 
 (0.0327) (0.0255) (0.0322)   
ln sales 0.2000 0.4989 0.2230 2.55/0.89 0.01***/0.38 
 (0.2284) (0.1957) (0.2502)   
ln leverage -0.1480 -0.0223 -0.1926 -0.24/-1.91 0.81/0.06 
 (0.1227) (0.0936) (0.1007)   
ln size 0.2217 0.0763 0.1255 0.41/0.65 0.68/0.51 
 (0.1813) (0.1841) (0.1917)   
ln tq 0.6522 1.2485 0.7916 3.74/2.68 0.00***/0.01*** 
 (0.3071) (0.3339) (0.2952)   
year 2000 1.1706 1.0407 1.1882 4.78/6.54 0.00***/0.00*** 
 (0.1856) (0.2178) (0.1817)   
year 2017 -0.1141 -0.2073 -0.0936 -1.63/-0.85 0.10*/0.40 
 (0.1072) (0.1268) (0.1103)   
𝛼 -2.3981 -4.0479   0.00***/0.00*** 

 (1.5503) (0.3395)    
Statistics              
𝑅  0.4213 0.7105 Wald-𝜒 (10) = 109.93  
𝐹(10,120) 10.94  p-value =           (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  1.45  M-estimator = 3.44  
𝜎  0.69  S-estimator = 1.55  
𝜌 ,  =  0.22  Scale = 0.81  
𝜌 =  0.82 [0,0.82] Efficiency = 85%  
Hausman-𝜒 (10) =  10.30     
p-value (0.4147)     
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Table 6. Robust Static Model - Private Economic Value of Technology (Brown Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for brown firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with 
heteroskedastic panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific 
autocorrelations by panel sizes with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust 
MM estimator of Gervini and Yohai (2002)that combines an initial high breakdown S estimator with a subsequent 
redescending M estimator a là Huber (1973). Robust standard errors in parenthesis are adjusted by industry clusters and 
calculated using the sandwich estimator. The Hausman test between models at the bottom of the table has null hypothesis 
that all coefficients are not different. Statistical significance is reported as follows: *** = 1 % statistical significance, ** 
= 5% statistical significance, and * = 10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 316 / MM = 314                    # SIC Groups: Fe&P-W = 21 / MM = 19 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk 0.1840 0.1497 0.2689 0.86/1.81 0.40/0.09* 
 (0.2718) (0.1737) (0.1484)   
ln kunc -0.2815 -0.2302 -0.2603 -3.42/-4.88 0.00***/0.00*** 
 (0.0567) (0.0673) (0.0533)   
ln tfpcon 5.3556 3.1804 2.7724 1.22/1.16 0.22/0.26 
 (3.1509) (2.6150) (3.3984)   
ln pat_cites 0.1969 0.2384 0.1150 4.28/1.72 0.00***/0.10* 
 (0.0961) (0.0557) (0.0669)   
ln sales -0.0993 0.3187 -0.1893 1.48/-0.90 0.14/0.38 
 (0.3566) (0.2148) (0.2105)   
ln leverage 0.4441 -0.4681 -0.0984 -2.10/-0.34 0.04**/0.74 
 (0.5763) (0.2231) (0.2888)   
ln size 0.6411 0.3647 0.5664 1.69/1.88 0.09*/0.08* 
 (0.4841) (0.2156) (0.3017)   
ln tq -0.2470 -0.3187 0.0278 -0.78/0.05 0.43/0.96 
 (0.7110) (0.3339) (0.5668)   
year 2000 0.9702 0.9017 1.2384 2.54/5.70 0.01***/0.00*** 
 (0.3153) (0.3556) (0.2172)   
year 2017 0.0868 -0.0870 -0.0421 -0.27/-0.26 0.78/0.80 
 (0.2745) (0.3190) (0.1602)   
𝛼 -2.2955 -4.1401   0.00***/0.00*** 

 (4.2585) (0.7204)    
Statistics                          
𝑅  0.6063 0.5715 Wald-𝜒 (10) = 379.33  
𝐹(10,120) 9.83  p-value =           (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  0.92  M-estimator = 3.44  
𝜎  1.08  S-estimator = 1.55  
𝜌 ,  =  0.41  Scale = 1.00  
𝜌 =  0.42 [0,1] Efficiency = 85%  
Hausman-𝜒 (10) =  19.57     
p-value (0.0336)     
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Table 7. GMM Dynamic Model - Private Economic Value of Technology (All Firms)   

Sample (1994-2019) 
This table provides regression estimates of the system-GMM dynamic panel data model of ln pat_value 
for all firms using the continuous updating GMM (CUE-GMM) estimator of Hansen, Heaton, and Yaron 
(1996) implementing Kripfganz (2019) xtdpdgmm package in STATA. The implementation 
incorporates (21) linear and (1) nonlinear moment conditions as suggested by Ahn and Schmidt (1995) 
under homoskedasticity and absence of serial correlation. The instruments for the forward orthogonal 
deviations equation are the endogenous variable ln pat_value with lags (2/4) and the pre-determined 
variables ln crisk, ln kunc, ln tfpcon and ln pat_cites with lags (1/3). The instruments for the equation 
in levels are ln pat_value lagged one period and the control variables ln sales, ln leverage, and ln size. 
GMM-type instruments are curtailed and collapsed to standard instruments in order to reduce the 
number of instruments. Robust standard errors are adjusted by industry clusters and calculated using 
the sandwich estimator. Statistical significance is reported as follows: *** = 1 % statistical significance, 
** = 5% statistical significance, and * = 10% statistical significance.    

 
Instruments = 22     # Obs. = 4,080   # SIC groups = 300 
ln pat_value Coefficient Std. Error t-stat p-value 
ln 𝑝𝑎𝑡 −  0.2455 0.0462 5.32 0.0000*** 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘  0.5814 0.1314 4.42 0.0000*** 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  0.2234 0.0788 2.84 0.0050*** 
𝑙𝑛 𝑘𝑢𝑛𝑐  -0.2674 0.0410 -6.52 0.0000*** 
𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0610 0.0233 -2.62 0.0090*** 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛  1.8268 1.4539 1.26 0.2100 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  4.8559 2.2045 2.20 0.0280** 
ln 𝑝𝑎𝑡  0.3787 0.0816 4.64 0.0000*** 
ln 𝑝𝑎𝑡 −  -0.1002 0.0443 -2.26 0.0250** 
ln sales 0.4890 0.1648 2.97 0.0030*** 
ln leverage -0.2454 0.0760 -3.23 0.0010*** 
ln size 0.0800 0.0640 1.25 0.2120 
year2000 1.0510 0.1968 5.34 0.0000*** 
year2017 0.2811 0.1809 1.505 0.1210 
𝛼 -2.8449 1.3220 -2.15 0.0320** 
Arellano-Bond AR first diff. test                                                                               
AR(1) = -6.78 (0.0000)       
AR(2) =  1.28 (0.2006)             
AR(3) = -0.23 (0.8177)             
Sargan-Hansen test for overid. restr. (𝜒 ) = 9.55 (0.2155) 
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Table 8. GMM Dynamic Model - Private Value of Technology (Green Firms)   

Sample (1994-2019) 
This table provides regression estimates of the System GMM dynamic panel data model of ln pat_value 
for green firms using the continuous updating GMM (CUE-GMM) estimator of Hansen, Heaton, and 
Yaron (1996) implementing Kripfganz (2019) xtdpdgmm package in STATA. The implementation 
incorporates (22) linear and (1) nonlinear moment conditions as suggested by Ahn and Schmidt (1995) 
under homoskedasticity and absence of serial correlation. The instruments for the forward orthogonal 
deviations equation are the endogenous variable ln pat_value with lags (2/4) and the pre-determined 
variables ln crisk, ln kunc, ln tfpcon and ln pat_cites with lags (1/3). The instruments for the equation 
in levels are ln pat_value lagged one period and the control variables ln sales, ln leverage, and ln size. 
GMM-type instruments are curtailed and collapsed to standard instruments in order to reduce the 
number of instruments. Robust standard errors are adjusted by industry clusters and calculated using 
the sandwich estimator. Statistical significance is reported as follows: *** = 1 % statistical significance, 
** = 5% statistical significance, and * = 10% statistical significance.   

 
Instruments = 22     # Obs. = 771    # SIC groups = 115 
ln pat_value Coefficient Std. Error t-stat p-value 
ln 𝑝𝑎𝑡 −  0.2751 0.0710 3.87 0.0000*** 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘  0.7336 0.2518 2.91 0.0040*** 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  0.4407 0.1660 2.65 0.0090*** 
𝑙𝑛 𝑘𝑢𝑛𝑐  -0.3019 0.0618 -4.88 0.0000*** 
𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0629 0.0419 -1.50 0.1360 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛  0.5298 3.2657 0.16 0.8710 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  5.0208 2.4719 2.03 0.0450** 
ln 𝑝𝑎𝑡  0.2665 0.1081 2.47 0.0150** 
ln 𝑝𝑎𝑡 −  0.0400 0.0658 0.61 0.5460 
ln sales 0.0592 0.1808 0.33 0.7440 
ln leverage -0.2999 0.1465 -2.05 0.0430** 
ln size 0.3776 0.1189 3.18 0.0020*** 
year2000 0.9420 0.3068 3.07 0.0030*** 
year2017 0.1623 0.2633 0.62 0.5390 
𝛼 -2.1132 1.3630 -1.55 0.1240 
Arellano-Bond AR first diff. test                                                                               
AR(1) = -2.97 (0.0030)       
AR(2) = -1.62 (0.1042)             
AR(3) =  1.82 (0.0689)             
Sargan-Hansen test for overid. restr. (𝜒 ) = 9.84 (0.1975) 
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Table 9. GMM Dynamic Model - Private Value of Technology (Brown Firms)  

Sample (1994-2019) 
This table provides regression estimates of the System GMM dynamic panel data model of ln pat_value 
for brown firms using the continuous updating GMM (CUE-GMM) estimator of Hansen, Heaton, and 
Yaron (1996) implementing Kripfganz (2019) xtdpdgmm package in STATA. The implementation 
incorporates (16) linear and (1) nonlinear moment conditions as suggested by Ahn and Schmidt (1995) 
under homoskedasticity and absence of serial correlation. The instruments for the forward orthogonal 
deviations equation are the endogenous variable ln pat_value with lags (3/4) and the pre-determined 
variables ln crisk, ln kunc, ln tfpcon and ln pat_cites with lags (1/2). The instruments for the equation 
in levels are ln pat_value lagged one, two and three periods and the control variables ln sales, ln leverage, 
and ln size. GMM-type instruments are curtailed and collapsed to standard instruments in order to 
reduce the number of instruments. Robust standard errors are adjusted by industry clusters and 
calculated using the sandwich estimator. Statistical significance is reported as follows: *** = 1 % 
statistical significance, ** = 5% statistical significance, and * = 10% statistical significance.   

 
Instruments = 17     # Obs. = 302    # SIC groups = 19 
ln pat_value Coefficient Std. Error t-stat p-value 
ln 𝑝𝑎𝑡 −  0.2121 0.0865 2.45 0.0250** 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘  -0.8651 0.4514 -1.92 0.0710* 
𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  -0.2139 0.1774 -1.21 0.2430 
𝑙𝑛 𝑘𝑢𝑛𝑐  -0.4787 0.2012 -2.30 0.0290** 
𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0353 0.1181 -0.30 0.7680 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛  18.2052 13.4472 1.35 0.1930 
𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  -14.3338 11.7448 -1.22 0.2380 
ln sales -1.1419 0.6610 -1.73 0.1010 
ln leverage -0.3469 0.7611 -0.46 0.6540 
ln size 1.1211 0.5073 2.21 0.0400** 
year2000 0.8630 0.9280 0.93 0.3650 
year2017 -0.7208 0.5502 -1.31 0.2070 

𝛼 3.8805 4.0017 0.97 0.3450 
Arellano-Bond AR first diff. test 
AR(1) = -2.91 (0.0036) 
AR(2) = -1.58 (0.1149)             
AR(3) =  1.86 (0.0636)             
Sargan-Hansen test for overid. restr. (𝜒 ) = 0.67 (0.9551) 
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Table 10. Non-Structural Panel Data VAR Model - (All Firms) - Sample (1994-2019) 
This table provides estimates of the panel data VAR estimated using iterated GMM and forward orthogonal deviations (Helmert transformation), following Holtz-Eakin, Newey, 
and Rosen (1998). Robust standard errors are adjusted by industry clusters and calculated using the sandwich estimator. Statistical significance is reported as follows: *** = 1 % 
statistical significance, ** = 5% statistical significance, and * = 10% statistical significance. The Granger non-causality test has null hypothesis that the excluded variable does 
not Granger-cause the dependent variable. The panel VAR eigenvalue-stability test is calculated based on the modulus of each eigenvalue of the fitted model. The VAR model is 
stable if all moduli of the companion matrix is inside the unit circle.  

 # Obs. = 3,569                                                                            # SIC groups = 269 

ln pat_value Coefficient Std.Error z-stat  p-value 

ln 𝑝𝑎𝑡 −  0.6722 0.1260 5.33  0.0000*** 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  0.3801 0.1129 3.37  0.0001*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.1231 0.0464 -2.65  0.0008*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  4.4986 1.0890 4.13  0.0000*** 

ln 𝑝𝑎𝑡  0.1290 0.0276 4.67  0.0000*** 

ln tfpcon      

ln 𝑝𝑎𝑡 −  0.0496 0.0024 1.91  0.0560* 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  -0.0025 0.0018 -1.37  0.1710 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0165 0.0007 -22.33  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  0.8022 0.0321 24.99  0.0000*** 

ln 𝑝𝑎𝑡  -0.0040 0.0007 -5.47  0.0000*** 

ln crisk      

ln 𝑝𝑎𝑡 −  -0.1204 0.0367 -3.28  0.0010*** 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  -0.4244 0.0290 -14.61  0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0999 0.0105 -9.51  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  -0.0457 0.4537 -0.10  0.9200 

ln 𝑝𝑎𝑡  -0.0186 0.0099 -1.88  0.0600* 

ln kunc      

ln 𝑝𝑎𝑡 −  0.0496 0.0900 0.55  0.5820 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  1.0180 0.0851 11.96  0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  0.5059 0.0235 21.50  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  1.3408 1.0742 1.25  0.2120 

ln 𝑝𝑎𝑡  0.0056 0.0264 0.21  0.831 

 Granger non-causality Wald test 

ln pat_value 𝝌 (𝟏) p-value ln tfpcon 𝝌 (𝟏) p-value 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  11.33 0.0010*** 𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  3.64 0.0560* 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  7.05 0.0080*** ln 𝑐𝑟𝑖𝑠𝑘 −  1.87 0.1710 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  17.06 0.0000*** 𝑙𝑛 𝑘𝑢𝑛𝑐 −  498.77 0.0000*** 

All(df=3) 33.83 0.0000*** All(df=3) 1419.62 0.0000*** 

ln crisk 𝝌 (𝟏) p-value ln kunc 𝝌 (𝟏) p-value 

𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  10.73 0.0010*** 𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  0.30 0.5820 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  90.34 0.0000*** ln 𝑐𝑟𝑖𝑠𝑘 −  143.00 0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  0.01 0.9200 𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  1.56 0.2120 

All(df=3) 449.76 0.0000*** All(df=3) 230.39 0.0000*** 

 eigenvalue-stability test 

 Modulus  0.8740/0.4604/0.4604/0.2291 - (All roots are inside the unit circle) 
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Table 11 

Forecast-error variance decomposition (FEVD) analysis (All Firms) 

Sample (1994-2019) 

In this table we report the results of the implied FEVD analysis using the 
Cholesky causal ordering implied by the non-structural panel VAR(1) that 
includes ln pat_value, ln_crisk, ln_kunc, and ln_tfpcon. Confidence intervals 
were computed using 1,000 Monte Carlo simulations using estimates reported 
in Table 10.  

Response variable  
and forecast horizon 

ln pat_value ln_crisk ln_kunc ln_tfpcon 

ln pat_value     
0 0.0000 0.0000 0.0000 0.0000 
1 1.0000 0.0000 0.0000 0.0000 
2 0.9026 0.0236 0.0630 0.0107 
3 0.7493 0.0187 0.2086 0.0234 
4 0.6366 0.0155 0.3162 0.0318 
5 0.5607 0.0132 0.3892 0.0368 
ln tfpcon     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0186 0.0038 0.3066 0.6710 
2 0.0366 0.0073 0.6176 0.3384 
3 0.0416 0.0041 0.7210 0.2333 
4 0.0482 0.0030 0.7572 0.1916 
5 0.0539 0.0025 0.7731 0.1704 
ln crisk     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0082 0.9918 0.0000 0.0000 
2 0.0626 0.7894 0.1480 0.0000 
3 0.0679 0.7808 0.1496 0.0018 
4 0.0724 0.7686 0.1553 0.0035 
5 0.0740 0.7536 0.1673 0.0050 
ln kunc     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0090 0.0189 0.9721 0.0000 
2 0.0072 0.0326 0.9599 0.0003 
3 0.0080 0.0323 0.9586 0.0010 
4 0.0082 0.0324 0.9580 0.0014 
5 0.0082 0.0324 0.9577 0.0016 
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Table 12. Non-Structural Panel Data VAR Model - (Green Firms) - Sample (1994-2019) 
This table provides estimates of the panel data VAR estimated using iterated GMM and forward orthogonal deviations (Helmert transformation), following Holtz-Eakin, Newey, 
and Rosen (1998). Robust standard errors are adjusted by industry clusters and calculated using the sandwich estimator. Statistical significance is reported as follows: *** = 1 % 
statistical significance, ** = 5% statistical significance, and * = 10% statistical significance. The Granger causality test has null hypothesis that the excluded variable odes not 
Granger-cause the dependent variable. The panel VAR eigenvalue-stability test is calculated based on the modulus of each eigenvalue of the fitted model. The VAR model is stable 
if all moduli of the companion matrix is inside the unit circle.  

 # Obs. = 630                                                                       # SIC groups = 89 

ln pat_value Coefficient Std.Error z-stat  p-value 

ln 𝑝𝑎𝑡 −  -0.2213 0.0667 -3.32  0.0010*** 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  0.2321 0.0761 3.05  0.0020*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.1654 0.0257 -6.44  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  3.4184 1.1486 2.98  0.0030*** 

ln 𝑝𝑎𝑡  0.1028 0.0618 1.66  0.0960* 

ln tfpcon      

ln 𝑝𝑎𝑡 −  -0.0066 0.0031 -2.14  0.0330** 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  0.0148 0.0029 5.07  0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0094 0.0007 -13.31  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  -0.1223 0.0370 -3.31  0.0010*** 

ln 𝑝𝑎𝑡  -0.0126 0.0015 -8.18  0.0000*** 

ln crisk      

ln 𝑝𝑎𝑡 −  -0.1592 0.0266 -0.60  0.5500 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  -1.0090 0.0296 -34.06  0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  0.0741 0.0090 8.25  0.0565* 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  -3.9700 0.4952 -8.02  0.0000*** 

ln 𝑝𝑎𝑡  -0.1830 0.0148 -12.39  0.0000*** 

ln kunc      

ln 𝑝𝑎𝑡 −  -0.3985 0.0847 -4.70  0.0000*** 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  -0.9235 0.0588 -15.95  0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  -0.0830 0.0199 -4.18  0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  -3.9162 0.9534 -4.11  0.0000*** 

ln 𝑝𝑎𝑡  -0.1146 0.0336 -3.41  0.0010*** 

 Granger non-causality Wald test 

ln pat_value 𝝌 (𝟏) p-value ln tfpcon 𝝌 (𝟏) p-value 

𝑙𝑛 𝑐𝑟𝑖𝑠𝑘 −  9.31 0.0020*** 𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  4.57 0.0330** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  41.47 0.0000*** ln 𝑐𝑟𝑖𝑠𝑘 −  25.71 0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  8.86 0.0030*** 𝑙𝑛 𝑘𝑢𝑛𝑐 −  177.06 0.0000*** 

All(df=3) 52.36 0.0000*** All(df=3) 180.06 0.0000*** 

ln crisk 𝝌 (𝟏) p-value ln kunc 𝝌 (𝟏) p-value 

𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  0.36 0.5500 𝑙𝑛 𝑝𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 −  22.13 0.0000*** 

𝑙𝑛 𝑘𝑢𝑛𝑐 −  68.12 0.0000*** ln 𝑐𝑟𝑖𝑠𝑘 −  254.54 0.0000*** 

𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  64.27 0.0000*** 𝑙𝑛 𝑡𝑓𝑝𝑐𝑜𝑛 −  16.87 0.0000*** 

All(df=3) 170.95 0.0000*** All(df=3) 341.29 0.0000*** 

 eigenvalue-stability test 

 Modulus  -0.9030/-0.3137/-0.3137/0.0951 - (All roots are inside the unit circle) 
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Table 13 

Forecast-error variance decomposition (FEVD) analysis (Green Firms) 

Sample (1994-2019) 

In this table we report the results of the implied FEVD analysis using the 
Cholesky causal ordering implied by the non-structural panel VAR(1) that 
includes ln pat_value, ln_crisk, ln_kunc, and ln_tfpcon. Confidence intervals 
were computed using 1,000 Monte Carlo simulations using estimates reported 
in Table 10.  

Response variable  
and forecast horizon 

ln pat_value ln_crisk ln_kunc ln_tfpcon 

ln pat_value     
0 0.0000 0.0000 0.0000 0.0000 
1 1.0000 0.0000 0.0000 0.0000 
2 0.9278 0.0012 0.0508 0.0202 
3 0.9218 0.0018 0.0529 0.0234 
4 0.9206 0.0022 0.0531 0.0242 
5 0.9201 0.0024 0.0531 0.0243 
ln tfpcon     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0457 0.0051 0.0443 0.9050 
2 0.0544 0.0061 0.0890 0.8504 
3 0.0678 0.0087 0.0989 0.8249 
4 0.0708 0.0112 0.1003 0.8177 
5 0.0711 0.0132 0.1004 0.8153 
ln crisk     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0002 1.0000 0.0000 0.0000 
2 0.0009 0.9011 0.0351 0.0628 
3 0.0014 0.8715 0.0361 0.0910 
4 0.0012 0.8593 0.0346 0.1049 
5 0.0010 0.8536 0.0331 0.1123 
ln kunc     
0 0.0000 0.0000 0.0000 0.0000 
1 0.0000 0.1451 0.8543 0.0000 
2 0.0576 0.2304 0.6985 0.0134 
3 0.0592 0.2884 0.6326 0.0198 
4 0.0560 0.3290 0.5881 0.0269 
5 0.0530 0.3580 0.5560 0.0332 
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Table 14. Robustness Check – Robust Static Model – Research & Development (All Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln rnd_assets for all firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 6,705 / MM = 6,696                # SIC Groups: Fe&P-W = 377 / MM = 368 
ln rnd_assets (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk 0.0760 0.0656 0.0168 2.99/1.07 0.00***/0.29 
 (0.0394) (0.0220) (0.0157)   
ln kunc -0.0409 -0.0444 -0.0146 -5.34/-3.13 0.00***/0.00*** 
 (0.0127) (0.0083) (0.0047)   
ln tfpcon 0.7723 1.2195 0.4523 2.71/1.64 0.01***/0.10* 
 (0.7374) (0.4505) (0.2762)   
ln sales 0.1115 -0.0495 0.2334 -0.91/3.52 0.36/0.00*** 
 (0.1458) (0.0544) (0.0664)   
ln leverage -0.1181 -0.0897 -0.1318 -3.86/-5.42 0.00***/0.00*** 
 (0.0436) (0.0232) (0.0243)   
ln size -0.3405 -0.1457 -0.4070 -3.24/-8.18 0.00***/0.00*** 
 (0.1048) (0.0450) (0.0498)   
ln tq 0.7653 0.5023 0.7838 6.51/9.89 0.00***/0.00*** 
 (0.1657) (0.0772) (0.0792)   
year 2000 0.3392 0.2668 0.0610 5.18/2.07 0.00***/0.04** 
 (0.0784) (0.0515) (0.0293)   
year 2017 0.0780 0.0155 0.0122 0.46/0.47 0.64/0.64 
 (0.0673) (0.0335) (0.0260)   
𝛼 -3.4933 -4.2194   0.00***/0.00*** 

 (0.8339) (0.2802)    
Statistics                        
𝑅  0.0243 0.7040 Wald-𝜒 (9) = 183.42  
𝐹(9,376) 7.57 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  2.50            M-estimator = 3.44  
𝜎  0.93  S-estimator = 1.55  
𝜌 ,  =  -0.06  Scale = 0.54  
𝜌 =  0.88 [0.90,1] Efficiency = 85%  
Hausman-𝜒 (9) =  14.06     
p-value (0.1202)     
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Table 15. Robustness Check – Robust Static Model – Research & Development (Green Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln rnd_assets for green firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 836 / MM = 812                       # SIC Groups: Fe&P-W = 118 / MM = 94 
ln rnd_assets (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk -0.0169 -0.0027 -0.0140 -0.04/-0.60 0.97/0.55 
 (0.0337) (0.0690) (0.0232)   
ln kunc -0.0020 -0.0691 -0.0055 -2.62/-0.61 0.00***/0.54 
 (0.0114) (0.0264) (0.0089)   
ln tfpcon 0.2500 6.4456 -0.3599 3.32/-0.80 0.00***/0.42 
 (0.5307) (1.9391) (0.4494)   
ln sales 0.4724 0.0309 0.4659 0.66/3.01 0.51/0.00*** 
 (0.1572) (0.4652) (0.1549)   
ln leverage -0.1346 -0.2036 -0.1583 -1.55/-3.08 0.12/0.00*** 
 (0.0488) (0.1310) (0.0514)   
ln size -0.5935 -0.3076 -0.5377 -0.72/-3.82 0.47/0.00*** 
 (0.1166) (0.4285) (0.1407)   
ln tq 0.9505 1.2686 0.9097 1.65/4.90 0.10*/0.00*** 
 (0.1638) (0.7689) (0.1855)   
year 2000 0.0501 0.2049 0.0423 1.01/0.75 0.31/0.45 
 (0.0628) (0.2030) (0.0560)   
year 2017 0.0299 -0.3249 0.0059 -1.58/0.16 0.12/0.87 
 (0.0498) (0.2059) (0.0361)   
𝛼 -3.001 -3.5590   0.00***/0.00*** 

 (0.7589) (0.2802)    
Statistics                        
𝑅   0.0029 0.8311 Wald-𝜒 (9) = 47.91  
𝐹(9,117) 7.11 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  2.08            M-estimator = 3.44  
𝜎  0.26  S-estimator = 1.55  
𝜌 ,  =  -0.17  Scale = 0.25  
𝜌 =  0.98 [0,1] Efficiency = 85%  
Hausman-𝜒 (9) =  8.08     
p-value (0.5264)     
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Table 16. Robustness Check – Robust Static Model – Research & Development (Brown Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for brown firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 412 / MM = 412                      # SIC Groups: Fe&P-W = 19 / MM = 19 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln crisk -0.0818 0.1740 -0.1184 1.38/-1.62 0.17/0.12 
 (0.1763) (0.1258) (0.0287)   
ln kunc -0.0344 -0.0492 0.0112 -1.01/0.55 0.31/0.55 
 (0.0474) (0.0487) (0.0205)   
ln tfpcon -2.5091 0.7023 -1.2242 0.32/-1.42 0.75/0.17 
 (2.3019) (2.2240) (0.8628)   
ln sales -0.1128 1.3323 0.0843 6.51/0.50 0.00***/0.62 
 (0.2993) (0.2045) (0.1672)   
ln leverage -0.0973 -1.1205 -0.3894 -5.46/-4.33 0.00***/0.00*** 
 (0.2594) (0.2053) (0.0899)   
ln size -0.2973 -1.5213 -0.4142 -7.53/-3.28 0.00***/0.00*** 
 (0.2335) (0.2019) (0.1262)   
ln tq 0.2841 2.7618 0.4891 7.22/1.95 0.00***/0.07* 
 (0.3352) (0.3823) (0.2509)   
year 2000 0.2285 0.2514 -0.056 0.90/-0.47 0.37/0.64 
 (0.3512) (0.2786) (0.1170)   
year 2017 0.0964 0.2467 -0.1626 1.43/-1.13 0.15/0.27 
 (0.3113) (0.1725) (0.1437)   
𝛼 -3.4607 -5.1107   0.00***/0.00*** 

 (1.0364) (0.7375)    
Statistics                    
𝑅  (𝑤𝑖𝑡ℎ𝑖𝑛) 0.0663 0.7172 Wald-𝜒 (9) = 93.87  
𝐹(9,18) 12.26 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  2.39            M-estimator = 3.44  
𝜎  0.87  S-estimator = 1.55  
𝜌 ,  =  -0.11  Scale = 0.60  
𝜌 =  0.88 [0.46,0.93] Efficiency = 85%  
Hausman-𝜒 (9) =  5.04     
p-value (0.8309)     
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Table 17. Robustness Check - Static Model – Number of Patents Granted (All Firms) 
Sample period: 1994-2019 

 
This table provides estimates of the model for pat_count for all firms using a Poisson GEE 
population-averaged estimator assuming independent correlations. Robust standard errors in 
parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical 
significance, and * = 10% statistical significance. Variable definitions are provided in Table 1. 
 
# Obs. = 4,869                                                       # SIC Groups = 367 
pat_count Coefficient Std.Error z-stat p-value 
ln crisk 0.2671 0.0325 8.22 0.0000*** 
ln kunc -0.0691 0.0081 -8.54 0.0000*** 
ln tfpcon 5.4514 0.6116 8.91 0.0000*** 
ln pat_cites 0.4114 0.0191 21.55 0.0000*** 
ln sales -0.2502 0.1426 -1.75 0.0800* 
ln leverage -0.2421 0.0810 -2.99 0.0003*** 
ln size 0.4765 0.1420 3.36 0.0010*** 
ln tq -0.2243 0.1668 -1.34 0.1790 
year 2000 0.1844 0.0466 3.95 0.0000*** 
year 2017 0.6149 0.0644 9.55 0.0000*** 
𝛼 -1.0518   0.0050*** 
Statistics                    
Wald-𝜒 (10)  1010.65     
p-value (0.0000)     
Deviance 10408.33               
Dispersion 2.14     
Pearson-
𝜒 (4869) 

11968.12     

Dispersion 
(Pearson) 

2.46     

Scale  1     
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Table 18. Robustness Check - Static Model – Number of Patents Granted (Green Firms) 
Sample period: 1994-2019 

 
This table provides estimates of the model for pat_count for green firms using a Poisson GEE 
population-averaged estimator assuming independent correlations. Robust standard errors in 
parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical 
significance, and * = 10% statistical significance. Variable definitions are provided in Table 1. 
 
# Obs. = 815                                                         # SIC Groups = 121 
pat_count Coefficient Std.Error z-stat p-value 
ln crisk 0.3416 0.0543 6.29 0.0000*** 
ln kunc -0.0595 0.0229 -2.60 0.0090*** 
ln tfpcon 8.6720 1.4300 6.06 0.0000*** 
ln pat_cites 0.3967 0.0339 11.71 0.0000*** 
ln sales -0.1747 0.1650 -1.06 0.2900 
ln leverage -0.4821 0.2053 -2.35 0.0190** 
ln size 0.3357 0.1681 2.000 0.0460** 
ln tq -0.1396 0.3330 -0.42 0.6750 
year 2000 0.3127 0.1022 3.06 0.0020*** 
year 2017 0.4776 0.1121 4.26 0.0000*** 
Statistics                    
Wald-𝜒 (10)  1309.32     
p-value (0.0000)     
Deviance 1311.16               
Dispersion 1.61     
Pearson-
𝜒 (815) 

1573.32     

Dispersion 
(Pearson) 

1.93     

Scale  1     
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Table 19. Robustness Check - Static Model – Number of Patents Granted (Brown Firms) 
Sample period: 1994-2019 

 
This table provides estimates of the model for pat_count for brown firms using a Poisson 
GEE population-averaged estimator assuming independent correlations. Robust standard 
errors in parenthesis are adjusted by industry clusters and calculated using the sandwich 
estimator. Statistical significance is reported as follows: *** = 1 % statistical significance, ** 
= 5% statistical significance, and * = 10% statistical significance. Variable definitions are 
provided in Table 1. 

 
# Obs. = 55                                                              # SIC Groups = 9 
pat_count Coefficient Std.Error z-stat p-value 
ln crisk 0.2471 0.1278 1.93 0.0530* 
ln kunc -0.0943 0.0200 -4.70 0.0000*** 
ln tfpcon 4.2310 2.0133 2.10 0.0360** 
ln pat_cites 0.1548 0.0848 1.83 0.0680* 
ln sales 0.4150 0.2421 1.71 0.0860* 
ln leverage 0.0029 0.2474 0.01 0.9910 
ln size -0.2660 0.2548 -1.04 0.2970 
ln tq 0.4835 0.4697 1.03 0.3030 
year 2000 0.3841 0.1660 2.31 0.0210** 
year 2017 0.4826 0.0981 4.92 0.0000*** 
Statistics                    
Wald-𝜒 (8)  3070.61     
p-value (0.0000)     
Deviance 33.78               
Dispersion 0.61     
Pearson-
𝜒 (55) 

33.62     

Dispersion 
(Pearson) 

0.61     

Scale  1     
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Table 20. Robustness Check – Robust Static Model – with VIX (All Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for all firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 4,869 / MM = 4,832               # SIC Groups: Fe&P-W = 367 / MM = 330 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln VIX 0.5015 0.3236 0.5373 4.69/10.52 0.00***/0.00*** 
 (0.0606) (0.0690) (0.0511)   
ln kunc -0.0737 -0.0838 -0.0709 -7.08/-7.38 0.00***/0.00*** 
 (0.0123) (0.0118) (0.0096)   
ln tfpcon -0.3176 2.2511 -1.5251 3.95/-3.34 0.00***/0.00*** 
 (0.6134) (0.5702) (0.4568)   
ln pat_cites 0.0952 0.1635 0.0683 14.60/5.48 0.00***/0.00*** 
 (0.0163) (0.0112) (0.0125)   
ln sales 0.2136 0.3113 0.2639 5.70/2.41 0.00***/0.02** 
 (0.1705) (0.0546) (0.1094)   
ln leverage -0.0952 -0.1459 -0.1151 -4.28/-2.78 0.00***/0.01*** 
 (0.0496) (0.0341) (0.0414)   
ln size 0.4888 0.3941 0.3992 7.94/3.94 0.00***/0.00*** 
 (0.1440) (0.0496) (0.1014)   
ln tq 0.1091 0.2573 0.2857 2.77/1.90 0.01**/0.06* 
 (0.2173) (0.0929) (0.1502)   
year 2000 0.6235 0.6230 0.6594 9.88/11.61 0.00***/0.00*** 
 (0.0745) (0.0630) (0.0568)   
year 2017 0.0737 0.0155 0.1129 0.23/2.38 0.82/0.02** 
 (0.0805) (0.0668) (0.0474)   
𝛼 -6.2183 -5.5014   0.00***/0.00*** 

 (0.7661) (0.3239)    
Statistics                   
𝑅  0.5479 0.5379 Wald-𝜒 (10) = 428.22  
𝐹(10,366) 34.42 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  1.25            M-estimator = 3.44  
𝜎  0.85  S-estimator = 1.55  
𝜌 ,  =  0.08  Scale = 0.87  
𝜌 =  0.68 [0,1] Efficiency = 85%  
Hausman-𝜒 (10) =  27.70     
p-value (0.0020)     



67 
 

Table 21. Robustness Check – Robust Static Model – with VIX (Green Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for green firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 815 / MM = 791                   # SIC Groups: Fe&P-W = 121 / MM = 98 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln VIX 0.4557 0.4190 0.5044 2.85/4.86 0.00***/0.00*** 
 (0.1158) (0.1469) (0.1038)   
ln kunc -0.0932 -0.1119 -0.1125 -3.23/-4.97 0.00***/0.00*** 
 (0.0384) (0.0347) (0.0277)   
ln tfpcon -1.4914 0.3873 -1.8741 0.32/-1.81 0.75/0.07* 
 (1.1697) (1.1991) (1.0342)   
ln pat_cites 0.0675 0.1144 0.0364 4.24/1.31 0.00***/0.19 
 (0.0324) (0.0270) (0.0279)   
ln sales 0.2035 0.4729 0.2104 2.32/0.89 0.02**/0.38 
 (0.2158) (0.2035) (0.2359)   
ln leverage -0.1331 -0.0433 -0.1812 -0.46/-1.87 0.64/0.06* 
 (0.1181) (0.0935) (0.0969)   
ln size 0.3375 0.1269 0.2790 0.66/1.55 0.51/0.12 
 (0.1747) (0.1912) (0.1799)   
ln tq 0.6124 1.2123 0.7188 3.54/2.65 0.00***/0.01*** 
 (0.2833) (0.3429) (0.2716)   
year 2000 0.8290 0.7857 0.8243 4.06/4.86 0.00***/0.00*** 
 (0.1673) (0.1936) (0.1696)   
year 2017 -0.0789 -0.1374 -0.0600 -1.07/-0.62 0.29/0.54 
 (0.0936) (0.1290) (0.0973)   
𝛼 -5.2874 -5.6838   0.00***/0.00*** 

 (1.6415) (0.5745)    
Statistics                        
𝑅  0.4107 0.7120 Wald-𝜒 (10) = 104.94  
𝐹(10,120) 11.59 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  1.42            M-estimator = 3.44  
𝜎  0.68  S-estimator = 1.55  
𝜌 ,  =  0.09  Scale = 0.80  
𝜌 =  0.81 [0,0.79] Efficiency = 85%  
Hausman-𝜒 (10) =  7.65     
p-value (0.6633)     
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Table 22. Robustness Check – Robust Static Model – with VIX (Brown Firms) 
Sample period: 1994-2019 

This table provides estimates of the static model for ln pat_value for brown firms using: 1) a (within-industry) pair-wise 
differenced fixed effects panel data regression estimator (Fe); 2) a Prais-Winsten panel data regression with heteroskedastic 
panel-corrected standard errors (PCSEs) and autocorrelations computed using panel-specific autocorrelations by panel sizes 
with the assumption that residuals follow an AR(1) stochastic process; and 3) the robust MM estimator of Gervini and 
Yohai (2002) that combines an initial high breakdown S estimator with a subsequent redescending M estimator a là Huber 
(1973). Robust standard errors in parenthesis are adjusted by industry clusters and calculated using the sandwich estimator. 
The Hausman test between models at the bottom of the table has null hypothesis that coefficients are not different. 
Statistical significance is reported as follows: *** = 1 % statistical significance, ** = 5% statistical significance, and * = 
10% statistical significance. Variable definitions are provided in Table 1. 

 
# Obs.: Fe&P-W = 316 / MM = 314                      # SIC Groups: Fe&P-W = 21 / MM = 19 
ln pat_value (Fe) (P-W) (MM) z-stat/t-stat p-value 
ln VIX 0.3890 0.8060 0.4132 2.66/2.29 0.01***/0.03** 
 (0.2434) (0.3025) (0.1804)   
ln kunc -0.2207 -0.1432 -0.1951 -2.26/-3.76 0.02**/0.00*** 
 (0.0646) (0.0634) (0.0519)   
ln tfpcon 4.0322 1.2360 0.8430 0.47/0.38 0.64/0.70 
 (3.0298) (2.6526) (2.1952)   
ln pat_cites 0.1695 0.1938 0.0761 3.42/1.15 0.00***/0.27 
 (0.0994) (0.0566) (0.0664)   
ln sales -0.1072 0.3476 -0.2201 1.54/-1.29 0.12/0.21 
 (0.3438) (0.2260) (0.1709)   
ln leverage 0.4387 -0.5272 -0.1498 -2.25/-0.49 0.02**/0.63 
 (0.5740) (0.2344) (0.3032)   
ln size 0.7202 0.3619 0.6541 1.61/2.38 0.11/0.03** 
 (0.4676) (0.2247) (0.2746)   
ln tq -0.3124 -0.2119 -0.0373 -0.51/-0.07 0.61/0.94 
 (0.7060) (0.4188) (0.5077)   
year 2000 0.7180 0.5535 0.9328 1.80/4.66 0.07*/0.00*** 
 (0.3064) (0.3077) (0.2003)   
year 2017 0.1623 0.1760 -0.0128 0.53/-0.07 0.60/094 
 (0.2720) (0.3318) (0.1838)   
𝛼 -4.4323 -7.1384   0.00***/0.54 

 (3.8377) (1.3413)    
Statistics               
𝑅  0.6096 0.5471 Wald-𝜒 (10) = 497.08  
𝐹(10,20) 12.08 p-value =          (0.0000)  
p-value (0.0000)  Break point = 50  
𝜎  0.91            M-estimator = 3.44  
𝜎  1.08  S-estimator = 1.55  
𝜌 ,  =  0.28  Scale = 0.98  
𝜌 =  0.42 [0,0.82] Efficiency = 85%  
Hausman-𝜒 (10) =  25.82     
p-value (0.0040)     
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Figure 1. This chart plots net-zero commitments updated to the year 2023 
of: 1) all UNFCCC (UN Climate Change Paris Agreement) member states; 
2) regions in the top 25-emiting countries; 3) cities with population above 
500,000 inhabitants; and the world’s largest publicly traded firms included 
in the Forbes 2000 list. The data is collected from publicly available sources 
such as international commitments, laws, governmental policies, entities’ 
websites, corporate annual reports, sustainability reports and press releases. 
It is collected and updated on a rolling basis by Black et al. (2023) in the 
following institutions: Net Zero Tracker, Energy and Climate Intelligence 
Unit, Data-Driven EnviroLab, and NewClimate Institute. The data is 
updated on a rolling basis up to 2023.  

 

 
Figure 2. In this chart we show the natural log of the number of patents 
granted, the number of patent citations and the natural log of the private 
economic value of patents granted in the U.S. from 1994 to 2019. Grey bars 
indicate indicate NBER dated economic recessions. 
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Figure 3. In this chart we show the time-series behavior of the two 
ambiguity factors KUNC and TFP connectedness. Grey bars correspond to 
NBER-dated U.S. economic recessions.  

 

 
Figure 4. In this chart we show the time-series behavior of the two risk 
factors CRISK and VIX. Grey bars correspond to NBER-dated U.S. 
economic recessions.  
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Figure 5. In this chart we plot orthogonalized impulse-
response functions using 1,000 Monte Carlo simulations 
and the nonstructural panel VAR(1) estimates across all 
firms reported in Tables 10 and 11, for a period of 10 years 
using Choleski decomposition. 



72 
 

 
 

Figure 6. In this chart we plot impulse-response functions 
from local projections using the fixed effects(Fe) PD 
regression  in Table 4, adding as control the recession of 
2008, for all firms for a period of 5 years. 
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Figure 7. In this chart we plot impulse-response functions 
from local projections using the fixed effects(Fe) PD 
regression  in Table 5, adding as control the recession of 
2008, for green firms for a period of 5 years. 
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Figure 8. In the two top charts we plot impulse-response 
functions from local projections using the fixed effects(Fe) 
PD regression in Table 4 for the interaction between ln 
crisk and ln kunc, for all firms for a period of 5 years. In 
the two bottom charts we plot orthogonalized impulse-
response functions for the interaction between ln crisk, ln 
kunc, and ln tfpcon using the nonstructural panel VAR(1) 
estimates across all firms reported in Tables 10 and 11, for 
a period of 10 years using Choleski decomposition. 

-0.4

-0.2

0

0.2

0.4

1 2 3 4 5

ln crisk > ln kunc 

-4

-2

0

2

1 2 3 4 5

ln kunc > ln crisk 

-0.004

-0.002

0

0.002

0.004

0.006

1 3 5 7 9

ln crisk > ln tfpcon 

-0.06

-0.04

-0.02

0

0.02

1 3 5 7 9

ln kunc > ln tfpcon 


